Densenet-Tensorflow
在寻找densnet网络的时候,我发现了一个结构清晰完整的网络代码,在此作备份。
https://github.com/taki0112/Densenet-Tensorflow
Densenet-Tensorflow
Tensorflow implementation of Densenet using Cifar10, MNIST
- The code that implements this paper is Densenet.py
- There is a slight difference, I used AdamOptimizer
If you want to see the original author's code or other implementations, please refer to this link
Requirements
- Tensorflow 1.x
- Python 3.x
- tflearn (If you are easy to use global average pooling, you should install tflearn
However, I implemented it using tf.layers, so don't worry
Issue
- I used tf.contrib.layers.batch_norm
def Batch_Normalization(x, training, scope):
with arg_scope([batch_norm],
scope=scope,
updates_collections=None,
decay=0.9,
center=True,
scale=True,
zero_debias_moving_mean=True) :
return tf.cond(training,
lambda : batch_norm(inputs=x, is_training=training, reuse=None),
lambda : batch_norm(inputs=x, is_training=training, reuse=True))
- If not enough GPU memory, Please edit the code
with tf.Session() as sess : NO
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess : OK
Idea
What is the "Global Average Pooling" ?
def Global_Average_Pooling(x, stride=1) :
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width, height]
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride)
# The stride value does not matter
If you use tflearn, please refer to this link
def Global_Average_Pooling(x):
return tflearn.layers.conv.global_avg_pool(x, name='Global_avg_pooling')
What is the "Dense Connectivity" ?
What is the "Densenet Architecture" ?
def Dense_net(self, input_x):
x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
x = Max_Pooling(x, pool_size=[3,3], stride=2) x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
x = self.transition_layer(x, scope='trans_3') x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final') x = Batch_Normalization(x, training=self.training, scope='linear_batch')
x = Relu(x)
x = Global_Average_Pooling(x)
x = Linear(x) return x
What is the "Dense Block" ?
def dense_block(self, input_x, nb_layers, layer_name):
with tf.name_scope(layer_name):
layers_concat = list()
layers_concat.append(input_x) x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0)) layers_concat.append(x) for i in range(nb_layers - 1):
x = Concatenation(layers_concat)
x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
layers_concat.append(x) return x
What is the "Bottleneck Layer" ?
def bottleneck_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training) x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
x = Drop_out(x, rate=dropout_rate, training=self.training) return x
What is the "Transition Layer" ?
def transition_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training)
x = Average_pooling(x, pool_size=[2,2], stride=2) return x
Compare Structure (CNN, ResNet, DenseNet)
Results
- (MNIST) The highest test accuracy is 99.2% (This result does not use dropout)
- The number of dense block layers is fixed to 4
for i in range(self.nb_blocks) :
# original : 6 -> 12 -> 48 x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
x = self.transition_layer(x, scope='trans_'+str(i))
CIFAR-10
CIFAR-100
Image Net
Related works
References
Author
Junho Kim
Densenet-Tensorflow的更多相关文章
- densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...
- tensorflow学习笔记——DenseNet
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和De ...
- TensorFlow从1到2(五)图片内容识别和自然语言语义识别
Keras内置的预定义模型 上一节我们讲过了完整的保存模型及其训练完成的参数. Keras中使用这种方式,预置了多个著名的成熟神经网络模型.当然,这实际是Keras的功劳,并不适合算在TensorFl ...
- 从零开始自己搭建复杂网络2(以Tensorflow为例)
从零开始自己搭建复杂网络(以DenseNet为例) DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集, 而 ...
- Tensorflow 之finetune微调模型方法&&不同层上设置不同的学习率
在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VG ...
- DenseNet算法详解——思路就是highway,DneseNet在训练时十分消耗内存
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http: ...
- W tensorflow/core/util/ctc/ctc_loss_calculator.cc:144] No valid path found 或 loss:inf的解决方案
基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别(文本检测:CTPN,文本识别:DenseNet + CTC),在使用自己的数据训练这个模型的过程中,出现如下错误,由于问题已经 ...
- tensorflow+inceptionv3图像分类网络结构的解析与代码实现
tensorflow+inceptionv3图像分类网络结构的解析与代码实现 论文链接:论文地址 ResNet传送门:Resnet-cifar10 DenseNet传送门:DenseNet SegNe ...
- TensorFlow中的语义分割套件
TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何 ...
- Tensorflow 官方版教程中文版
2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...
随机推荐
- confluence
Confluence Confluence是一个专业的wiki程序.它是一个知识管理的工具,通过它可以实现团队成员之间的协作和知识共享. Confluence不是一个开源软件,非商业用途可以免费使用. ...
- linux下&、nohup与screen的比较
& 首先,linux进程是区分前台进程和后台进程的. 通常,在终端输入的命令执行的前台进程模式.如果一个命令要执行好久,就会阻塞住终端好久,不能进行其他工作,所以,我们可以把执行花费时间很长的 ...
- C#中几种创建对象的方式的对比
最近学习了msil,发现了很多好玩的,今天介绍一个用IL来创建对象的方式 1.最常见的两种创建对象方式 public static T Create<T>() where T : new( ...
- 异构数据库之间完全可以用SQL语句导数据
告诉你一个最快的方法,用SQLServer连接DBF 在SQLServer中执行 SELECT * into bmk FROM OpenDataSource( ‘Microsoft.Jet.OLEDB ...
- wordpress WP-PageNavi分页
1.安装WP-PageNavi分页插件: 这个就没什么好介绍直接安装插件. 2.在需要分页的页面按下面的方式加上相应代码: 插入的位置在以 <?php if (have_posts()) : ? ...
- WebApplication与WebSite区别
1. WebApplication(Web应用程序)和WebSite(网站)的区别:WebSite是为了兼容从ASP转过来的开发人员的习惯而存在的,用起来简单,例如:不需要创建命名控件.C#代码修改以 ...
- Java学习之基本数据类型和引用数据类型区别
JAVA中分为基本数据类型和引用数据类型区别一.基本数据类型: byte:Java中最小的数据类型,在内存中占8位(bit),即1个字节,取值范围-128~127,默认值0 short:短整型,在内存 ...
- suse11/12关闭防火墙
suse11关闭操作为:service SuSEfirewall2_setup stopservice SuSEfirewall2_init stop 取消开机启动防火墙:chkconfig SuS ...
- diyiti.cpp
diyiti.cpp/c/pas diyiti.in diyiti.out 2s/256MB 给定两个01串,S,T(下标从0开始). 支持如下3种操作: 1. 修改S第i位的字符,即0->1, ...
- UVAlive-7040 color(组合数学,二项式反演)
链接:vjudge 题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同.现在问恰好用了 $k$ 种颜色的合法方案数.答案对 $10^9+7$ ...