P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows
![](https://www.cnblogs.com/images/cnblogs_com/Tony-Double-Sky/1270353/o_YH[_INPMKE_4RY]3DF(33@G.png)
错误日志: dfs 判负环没有把初值赋为 \(0\) 而是 \(INF\), 速度变慢
Solution
设现在走到了一个环, 环内有 \(n\) 个点, \(n\) 条边, 点权为 \(f_{i}\), 边权为 \(e_{i}\)
设 \(k = \sum_{i = 1}^{n}\frac{f_{i}}{e_{i}}\), 显然是 0/1分数规划模型, 变形可得: \(\sum_{i = 1}^{n}f_{i} - k * ei \geq 0\) 时 \(k\) 合法
此式不太好判断, 我们在不等式两边乘上 \(-1\), 得 \(\sum_{i = 1}^{n}k * e_{i} - f_{i} \leq 0\) ,转换为图中负环的判定
若存在负环则此 \(k\) 合法
二分求解0/1分数规划即可
求负环的时候, 初始距离全部设为 \(0\)
如果有负环的话此个距离 \(0\) 肯定能变得更小, 赋0可以减少更新量, 加快效率
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019,INF = 1e9, maxv = 20019;;
int head[maxn],nume = 1;
struct Node{
int v,dis,nxt;
}E[maxv << 3];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int num, nr;
double f[maxn];//愉♂悦值
double d[maxn];
bool ins[maxn], vis[maxn], flag;
void SPFA_dfs(int u, double k){
ins[u] = 1, vis[u] = 1;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
double dis = E[i].dis;
if(d[u] + k * dis - f[v] <= d[v]){
if(ins[v] || flag){flag = 1;return ;}
d[v] = d[u] + k * dis - f[v];
SPFA_dfs(v, k);
}
}
ins[u] = 0;
}
bool check(double k){
REP(i, 1, num)d[i] = 0, vis[i] = 0, ins[i] = 0;
flag = 0;
REP(i, 1, num){
if(!vis[i])d[i] = 0, SPFA_dfs(i, k);
if(flag)return 1;
}
return flag;
}
double search(double l, double r){
double ans;
while(r - l >= 1e-3){
double mid = (l + r) / 2;
if(check(mid))ans = mid, l = mid;
else r = mid;
}
return ans;
}
double maxx = 0;
int main(){
num = RD(), nr = RD();
REP(i, 1, num)f[i] = RD(), maxx += f[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
add(u, v, dis);
}
printf("%.2lf\n", search(0, maxx));
return 0;
}
P2868 [USACO07DEC]观光奶牛Sightseeing Cows的更多相关文章
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...
- 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解
题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...
- [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows
一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...
- Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows
01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...
- 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...
随机推荐
- Redis学习之路(三)之Redis主从和哨兵模式
目录 一.Redis主从配置 1.环境说明 2.修改主从的redis配置文件 3.启动主从redis 3.数据同步验证 二.Redis哨兵模式 1.Redis sentinel介绍 2.Redis S ...
- JS计算混合字符串长度
用的是正则表达式 var str = ”坦克是tank的音译”; var len = str.match(/[^ -~]/g) == null ? str.length : str.length + ...
- vue初学实践之路——vue简单日历组件(2)
上一篇我们已经实现了基本的日历显示功能,这一次我们要加上预定的功能 废话不多说,上代码 <div id="calendar"> <!-- 年份 月份 --> ...
- [环境配置]Ubuntu 16.04 源码编译安装OpenCV-3.2.0+OpenCV_contrib-3.2.0及产生的问题
1.OpenCV-3.2.0+OpenCV_contrib-3.2.0编译安装过程 1)下载官方要求的依赖包 GCC 4.4.x or later CMake 2.6 or higher Git GT ...
- java代码求阶乘n!
面试过程中总是遇到要求写一段Java代码求阶乘.下面就是就是两种求阶乘 n! 的方法: 1.使用递归求解n! public int doFactorial(int n){ if(n<0){ re ...
- 原生 JavaScript 实现 AJAX、JSONP
相信大多数前端开发者在需要与后端进行数据交互时,为了方便快捷,都会选择JQuery中封装的AJAX方法,但是有些时候,我们只需要JQuery的AJAX请求方法,而其他的功能用到的很少,这显然是没必要的 ...
- CSAPP lab2 二进制拆弹 binary bombs phase_4
给出对应于7个阶段的7篇博客 phase_1 https://www.cnblogs.com/wkfvawl/p/10632044.htmlphase_2 https://www.cnblogs. ...
- 派生类&简单工厂模式
派生类&简单工厂模式 git链接: Operation3.1.1 题目描述的代码部分的解释 首先是声明一个Rand类作为父类,然后两个子类RandNumber类和RandOperation类, ...
- Alpha 冲刺八
团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 完善各自部分 项目描 ...
- Windows 2019 下安装Oracle18c
1. 跟之前版本不一样 与linux 的版本一样 18c的DB 端的安装有区别. 首先需要 创建一个oracle的目录. 这里最简单的方法是 参照12c的目录来 创建 比如我创建的 然后将 db_ho ...