P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows

错误日志: dfs 判负环没有把初值赋为 \(0\) 而是 \(INF\), 速度变慢
Solution
设现在走到了一个环, 环内有 \(n\) 个点, \(n\) 条边, 点权为 \(f_{i}\), 边权为 \(e_{i}\)
设 \(k = \sum_{i = 1}^{n}\frac{f_{i}}{e_{i}}\), 显然是 0/1分数规划模型, 变形可得: \(\sum_{i = 1}^{n}f_{i} - k * ei \geq 0\) 时 \(k\) 合法
此式不太好判断, 我们在不等式两边乘上 \(-1\), 得 \(\sum_{i = 1}^{n}k * e_{i} - f_{i} \leq 0\) ,转换为图中负环的判定
若存在负环则此 \(k\) 合法
二分求解0/1分数规划即可
求负环的时候, 初始距离全部设为 \(0\)
如果有负环的话此个距离 \(0\) 肯定能变得更小, 赋0可以减少更新量, 加快效率
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019,INF = 1e9, maxv = 20019;;
int head[maxn],nume = 1;
struct Node{
int v,dis,nxt;
}E[maxv << 3];
void add(int u,int v,int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int num, nr;
double f[maxn];//愉♂悦值
double d[maxn];
bool ins[maxn], vis[maxn], flag;
void SPFA_dfs(int u, double k){
ins[u] = 1, vis[u] = 1;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v;
double dis = E[i].dis;
if(d[u] + k * dis - f[v] <= d[v]){
if(ins[v] || flag){flag = 1;return ;}
d[v] = d[u] + k * dis - f[v];
SPFA_dfs(v, k);
}
}
ins[u] = 0;
}
bool check(double k){
REP(i, 1, num)d[i] = 0, vis[i] = 0, ins[i] = 0;
flag = 0;
REP(i, 1, num){
if(!vis[i])d[i] = 0, SPFA_dfs(i, k);
if(flag)return 1;
}
return flag;
}
double search(double l, double r){
double ans;
while(r - l >= 1e-3){
double mid = (l + r) / 2;
if(check(mid))ans = mid, l = mid;
else r = mid;
}
return ans;
}
double maxx = 0;
int main(){
num = RD(), nr = RD();
REP(i, 1, num)f[i] = RD(), maxx += f[i];
REP(i, 1, nr){
int u = RD(), v = RD(), dis = RD();
add(u, v, dis);
}
printf("%.2lf\n", search(0, maxx));
return 0;
}
P2868 [USACO07DEC]观光奶牛Sightseeing Cows的更多相关文章
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows
P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题目描述 Farmer John has decided to reward his cows for their har ...
- 洛谷P2868 [USACO07DEC]观光奶牛 Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...
- 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解
题面 这道题是一道标准的01分数规划: 但是有一些细节可以优化: 不难想到要二分一个mid然后判定图上是否存在一个环S,该环是否满足∑i=1t(Fun[vi]−mid∗Tim[ei])>0 但是 ...
- [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- POJ3621或洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows
一道\(0/1\)分数规划+负环 POJ原题链接 洛谷原题链接 显然是\(0/1\)分数规划问题. 二分答案,设二分值为\(mid\). 然后对二分进行判断,我们建立新图,没有点权,设当前有向边为\( ...
- Luogu 2868 [USACO07DEC]观光奶牛Sightseeing Cows
01分数规划复习. 这东西有一个名字叫做最优比率环. 首先这个答案具有单调性,我们考虑如何检验. 设$\frac{\sum_{i = 1}^{n}F_i}{\sum_{i = 1}^{n}T_i} = ...
- 洛谷 2868 [USACO07DEC]观光奶牛Sightseeing Cows
题目戳这里 一句话题意 L个点,P条有向边,求图中最大比率环(权值(Fun)与长度(Tim)的比率最大的环). Solution 巨说这是0/1分数规划. 话说 0/1分数规划 是真的难,但貌似有一些 ...
随机推荐
- PowerBI开发 第五篇:关系和交互
PowerBI 使用 内存的列式数据库 VertiPaq,用于对已发布的数据集进行数据压缩和快速处理,能够使PowerBI报表执行脱机访问,面向列的处理,高度优化对1:N关系的处理性能.关系是数据分析 ...
- 策略模式与SPI机制,到底有什么不同?
这里说的策略模式是一种设计模式,经常用于有多种分支情况的程序设计中.例如我们去掉水果皮,一般来说对于不同的水果,会有不同的拨皮方式.此时用程序语言来表示是这样的: if(type == apple){ ...
- Unity日记—对象缓存池
最近都在忙别的事了,今天忙里偷闲了解了一下对象池是啥玩意,简单记录一下. 还是个正在学习的萌新,如果写的不好请见谅. 1.对象池是啥 在了解对象池之后,我才意识到以前写的代码有多么蠢,当场景中有一些重 ...
- H5游戏接微信小游戏的支付,满满的都是坑!
h5小游戏接微信的支付,简直是在为难我胖虎,说多了都是泪. 准备工作: 准备工作一定要做好,不然很容易出错.首先是session_key这个字段,这个session_key是登录的时候需要用到的,根据 ...
- Linux内核分析 实验三:跟踪分析Linux内核的启动过程
贺邦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 一. 实验过程 ...
- 20135337朱荟潼 Linux第五周学习总结——扒开系统调用的三层皮(下)
朱荟潼 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课http://mooc.study.163.com/course/USTC 1000029000 一.学习内容 (一 ...
- week6:个人博客作业
这周主要是参与团队编程的讨论 团队编程中发现很多问题: 1,每个人共同空闲的时间不好找 就我组来说,我是考研,每天晚上都要去外面上课,有的人在进行大创,,也有的像我一样在整考研的东西,还有的进行其他, ...
- centos 6.9安装mysql
1.确认mysql是否已安装,有下面的代码可知 [root@cdh1 zjl]# yum list installed mysql* Loaded plugins: fastestmirror, re ...
- OneZero第五周第二次站立会议(2016.4.19)
1. 时间: 15:15--15:25 共计10分钟. 2. 成员: X 夏一鸣 * 组长 (博客:http://www.cnblogs.com/xiaym896/), G 郭又铭 (博客:http ...
- Python3 - DBUtils 和 pymysql 整合
之前一篇Python 封装DBUtils 和pymysql 中写过一个basedao.py,最近几天又重新整理了下思绪,优化了下 basedao.py,目前支持的方法还不多,后续会进行改进.添加. 主 ...