Marriage Match IV

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4381    Accepted Submission(s): 1310

Problem Description

Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.

So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?

 

Input

The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.

 

Output

Output a line with a integer, means the chances starvae can get at most.
 

Sample Input

3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7

6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6

2 2
1 2 1
1 2 2
1 2

 

Sample Output

2
1
1
 

Author

starvae@HDU
 

Source

 

只有最短路上的边才加入网络,容量都为1,跑最大流

 //2017-08-25
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int next, to, w;
}edge[M]; void add_edge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} struct Dinic{
int level[N], S, T;
void init(){
tot = ;
memset(head, -, sizeof(head));
}
void set_s_t(int _S, int _T){
S = _S;
T = _T;
}
bool bfs(){
queue<int> que;
memset(level, -, sizeof(level));
level[S] = ;
que.push(S);
while(!que.empty()){
int u = que.front();
que.pop();
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
int w = edge[i].w;
if(level[v] == - && w > ){
level[v] = level[u]+;
que.push(v);
}
}
}
return level[T] != -;
}
int dfs(int u, int flow){
if(u == T)return flow;
int ans = , fw;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to, w = edge[i].w;
if(!w || level[v] != level[u]+)
continue;
fw = dfs(v, min(flow-ans, w));
ans += fw;
edge[i].w -= fw;
edge[i^].w += fw;
if(ans == flow)return ans;
}
if(ans == )level[u] = ;
return ans;
}
int maxflow(){
int flow = ;
while(bfs())
flow += dfs(S, INF);
return flow;
}
}dinic; //dis[0][u]表示从起点到u的最短距离,dis[1][u]表示从终点到u的最短距离,cnt[u]记录u入队次数,判负环用
int dis[][N], cnt[N];
bool vis[N];
bool spfa(int s, int n, int op){
memset(vis, false, sizeof(vis));
memset(dis[op], INF, sizeof(dis));
memset(cnt, , sizeof(cnt));
vis[s] = true;
dis[op][s] = ;
cnt[s] = ;
queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
int w = edge[i].w;
if(dis[op][v] > dis[op][u] + w){
dis[op][v] = dis[op][u] + w;
if(!vis[v]){
vis[v] = true;
q.push(v);
if(++cnt[v] > n)return false;
}
}
}
}
return true;
} struct Line{
int u, v, w;
}line[M]; int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputO.txt", "r", stdin);
int T, n, m, A, B;
cin>>T;
while(T--){
cin>>n>>m;
int u, v, w;
for(int i = ; i < m; i++)
cin>>line[i].u>>line[i].v>>line[i].w;
cin>>A>>B;
dinic.init();
for(int i = ; i < m; i++)
add_edge(line[i].u, line[i].v, line[i].w);
spfa(A, n, );//求从起点开始到各个点的最短路
dinic.init();
for(int i = ; i < m; i++)
add_edge(line[i].v, line[i].u, line[i].w);
spfa(B, n, );//求从终点开始到各个点的最短路
dinic.init();
dinic.set_s_t(A, B);
for(int i = ; i < m; i++){
u = line[i].u;
v = line[i].v;
w = line[i].w;
//只有最短路上的边才加入网络
if(dis[][u]+dis[][v]+w == dis[][B]){
add_edge(u, v, );
add_edge(v, u, );
}
}
cout<<dinic.maxflow()<<endl;
}
return ;
}

HDU3416(KB11-O spfa+最大流)的更多相关文章

  1. bzoj 2285 [Sdoi2011]保密(二分,spfa + 最大流)

    Description 现在,保密成为一个很重要也很困难的问题.如果没有做好,后果是严重的.比如,有个人没有自己去修电脑,又没有拆硬盘,后来的事大家都知道了. 当然,对保密最需求的当然是军方,其次才是 ...

  2. POJ 2175 spfa费用流消圈

    题意:给出n栋房子位置和每栋房子里面的人数,m个避难所位置和每个避难所可容纳人数.然后给出一个方案,判断该方案是否最优,如果不是求出一个更优的方案. 思路:很容易想到用最小费用流求出最优时间,在与原方 ...

  3. 最长可重区间集 spfa费用流

    给定实直线L上的n个开区间,和一个正整数k 选取若干个区间,在保证实直线L上的任意一个点最多被选出区间覆盖k次的情况下,使得这些区间的长度和最大 先把区间按照左端点排序, 考虑到重复其实就代表着相交, ...

  4. ZOJ 3362 Beer Problem(SPFA费用流应用)

    Beer Problem Time Limit: 2 Seconds      Memory Limit: 32768 KB Everyone knows that World Finals of A ...

  5. hdu3416+hdu6582(最短路+最大流)

    题意 hdu3416: 给一个图,边不能重复选,问有多少个最短路 hdu6582: 给一个图,问最少删除边权多少的边后,最短路长度增加 分析 边不能重复选这个条件可以想到边权为1,跑最大流,所以我们可 ...

  6. Spfa费用流模板

    ; ,maxm=; ,fir[maxn],nxt[maxm],to[maxm]; int cap[maxm],val[maxm],dis[maxn],path[maxn]; void add(int ...

  7. 洛谷.4015.运输问题(SPFA费用流)

    题目链接 嗯..水题 洛谷这网络流二十四题的难度评价真神奇.. #include <queue> #include <cstdio> #include <cctype&g ...

  8. BZOJ.4819.[SDOI2017]新生舞会(01分数规划 费用流SPFA)

    BZOJ 洛谷 裸01分数规划.二分之后就是裸最大费用最大流了. 写的朴素SPFA费用流,洛谷跑的非常快啊,为什么有人还T成那样.. 当然用二分也很慢,用什么什么迭代会很快. [Update] 19. ...

  9. POJ2195 Going Home[费用流|二分图最大权匹配]

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22088   Accepted: 11155 Desc ...

随机推荐

  1. cad.net之ACAD移植到GCAD的自动加载问题

    将acad.pgp,lsp,fas,vlx,名称增加一份gcad.pgp,lsp,fas,vlx.涉及系统加载用. Lisp的拖拉加载在gcad无法通过lastprompt获取命令历史栏最后一行(含路 ...

  2. dubbo实现原理之SPI简介

    dubbo采用微内核+插件体系,设计优雅,扩展性很强.微内核+插件体系是如何实现的呢?想必大家都知道SPI(service provider interface)机制.这种机制的原理是假如我们定义了服 ...

  3. Windows Service 项目中 Entity Framework 无法加载的问题

    Windows Service 项目引用了别的类库项目,别的项目用到了 Entity Framework(通过Nuget引入),但是我的 Windows Service 无法开启,于是我修改了 App ...

  4. web安全之XSS注入

    之前在做项目的时候有遇到一些安全问题,XSS注入就是其中之一 那么,什么是XSS注入呢? XSS又叫CSS (Cross Site Script) ,跨站脚本攻击.它指的是恶意攻击者往Web页面里插入 ...

  5. JVM锁优化

    1. 概述 JDK1.6版本花费了大量精力去实现各种锁优化,如适应性自旋,锁消除,锁粗化,轻量级锁,偏向锁等,这些技术都是为了在线程期间更高效的共享数据,以及解决竞争问题. 2. 自旋锁与自适应自旋 ...

  6. yarn 学习 小记

    官网:https://yarnpkg.com/zh-Hans/docs/installing-dependencies 简介:包管理工具,和npm类似主要特点:快速.安全.可靠 快速:本地安装包后,会 ...

  7. Java - 基础起步

    package basics; //声明该类所在的包为basics,package为包的关键字 import java.util.Date; //导入java.util包中的Date类,用来封装当前的 ...

  8. [LeetCode]无重复字符的最长子串

    给定一个字符串,找出不含有重复字符的最长子串的长度. 示例 1: 输入: "abcabcbb" 输出: 3 解释: 无重复字符的最长子串是 "abc",其长度为 ...

  9. 11-02 Java Object类使用详解

     Object 作为超类 Object是类层次结构的根类,所有的类都直接或者间接的继承自Object类. Object类的构造方法有一个,并且是无参构造,这其实就是理解当时我们说过,子类构造方法默认访 ...

  10. 线程中的定时器Timer类

    Timer 定时器 几分钟之后执行一个任务. 创建了一个定时器相当于开启了一条线程,TimerTask相当于一个线程的任务.内部使用wait/notify机制来实现的. 用法非常的简单  就足以里面的 ...