Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

Sample Input

7

Sample Output

6
#include<iostream>
#include<algorithm>
using namespace std;
int dp[];
int mod=1e9;
int main(){
int n;
cin>>n;
dp[]=;
for(int i=;i<=n;i++){
if(i%==){
dp[i]=dp[i-];
}
else{
dp[i]=(dp[i-]+dp[i>>])%mod;
}
}
cout<<dp[n]<<endl;
return ;
}

POJ2229--Sumsets(动态规划)的更多相关文章

  1. POJ2229 Sumsets 【递归】

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 13210   Accepted: 5300 Descrip ...

  2. poj2229 Sumsets (递推)

    http://poj.org/problem?id=2229 看到题目能感觉到多半是动态规划,但是没有清晰的思路. 打表找规律: #include<cstdio> #include< ...

  3. POJ2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 19024   Accepted: 7431 Descrip ...

  4. [USACO2005][poj2229]Sumsets(递推)

    http://poj.org/problem?id=2229 分析: 显然的递推 若n为奇数,那么肯定是在n-1的基础上前面每个数+1,即f[n]=f[n-1] 若n为偶数 当第一位数字是1的时候,等 ...

  5. POJ2229 - Sumsets(完全背包)

    题目大意 给定一个数N,问由不同的2的幂之和能组成N的方法有多少种 题解 看完题目立马想到完全背包...敲完代码上去超时了....后来发现是%的原因...改成减法就A了...%也太他妈耗时了吧!!!( ...

  6. 《挑战程序设计竞赛》2.3 动态规划-基础 POJ3176 2229 2385 3616 3280

    POJ3176 Cow Bowling 题意 输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线. 规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个 ...

  7. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  8. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  9. 子集和问题(应用--换零钱)POJ2229:Sumsets

    我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...

  10. 【动态规划】POJ-2229

    一.题目 Description Farmer John commanded his cows to search for different sets of numbers that sum to ...

随机推荐

  1. laravel中不使用 remember_token时退出报错,如何解决?

    Route::get('auth/logout','Auth\AuthController@getLogout'); 这是laravel自带的退出功能只需要写这一条路由就行了,但是很可能爆出以下错误: ...

  2. Oracle_高级功能(9) 性能优化

    1.oracle优化器 优化目标分为4种: choose (选择性) rule (基于规则) first rows(第一行) all rows(所有行) Description:描述sql的执行计划 ...

  3. PAT 1038 统计同成绩学生(20)(代码)

    1038 统计同成绩学生(20)(20 分) 本题要求读入N名学生的成绩,将获得某一给定分数的学生人数输出. 输入格式: 输入在第1行给出不超过10^5^的正整数N,即学生总人数.随后1行给出N名学生 ...

  4. dpdk中文文档

    Linux平台上DPDK入门指南 1. 简介 1.1. 文档地图 2. 系统要求 2.1. X86 上预先设置 BIOS 2.2. 编译DPDK 2.3. 运行DPDK应用程序 3. 使用源码编译DP ...

  5. Games.RecordMobileGamePlayVideo

    1. kamcord https://github.com/kamcord/ 2. Sound Stage & iSimulate http://blog.tacograveyard.com/ ...

  6. 2018 How to register and install LAUNCH ICARSCAN software ?

    2018 New Version ICARSCAN is available now! Here’s the instruction on how to install ICARSCAN softwa ...

  7. export export defalut

    require/exports 和 import/export 形式不一样 require/exports 的用法只有以下三种简单的写法: const fs = require('fs') expor ...

  8. SVN 钩子 同步测试服务器

    http://blog.csdn.net/showso2006/article/details/6750441 多人开始使用subversion之后,就想着,要建立一个测试用的服务器,不需要把文件up ...

  9. python 函数调用顺序

    def foo(): print ('in the foo') bar() def bar(): print ('in the bar') foo() 1.foo函数进入内存 2.bar函数进入内存 ...

  10. sql复杂查询

    内连接 左外连接 Left Outer Join On  ,无论右边是否匹配到,左边的数据都在 右外连接 Right Outer Join On ,无论左边是否匹配到,右边的数据都在 子查询: 将一个 ...