概念

凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包

也被称为:Graham/Andrew Scan 算法。在二维欧几里得空间中,凸包可想象为一条刚好包着所有点的橡皮圈。

问题

给定平面上的二维点集,求解其凸包。

  

过程

1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量<H,p>与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

2. 线段<H, K>一定在凸包上,接着加入C。假设线段<K, C>也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段<K, D>才会在凸包上,所以将线段<K, C>排除,C点不可能是凸包。

3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量<pn - 1, pn>与<pn, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

在上图中,加入K点时,由于线段<H,K>相对于<H,C>为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段<K, D>相对<H, K>为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。

复杂度

这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。

代码实现(C++&STL)

 #include <algorithm>
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
//二维点(或向量)结构体定义
#ifndef _WINDEF_
struct POINT { int x; int y; };
#endif
typedef vector<POINT> PTARRAY;
//判断两个点(或向量)是否相等
bool operator==(const POINT &pt1, const POINT &pt2) {
return (pt1.x == pt2.x && pt1.y == pt2.y);
}
// 比较两个向量pt1和pt2分别与x轴向量(1, 0)的夹角
bool CompareVector(const POINT &pt1, const POINT &pt2) {
//求向量的模
float m1 = sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y));
float m2 = sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y));
//两个向量分别与(1, 0)求内积
float v1 = pt1.x / m1, v2 = pt2.x / m2;
return (v1 > v2 || (v1 == v2 && m1 < m2));
}
//计算凸包
void CalcConvexHull(PTARRAY &vecSrc) {
//点集中至少应有3个点,才能构成多边形
if (vecSrc.size() < ) {
return;
}
//查找基点
POINT ptBase = vecSrc.front(); //将第1个点预设为最小点
for (PTARRAY::iterator i = vecSrc.begin() + ; i != vecSrc.end(); ++i) {
//如果当前点的y值小于最小点,或y值相等,x值较小
if (i->y < ptBase.y || (i->y == ptBase.y && i->x > ptBase.x)) {
//将当前点作为最小点
ptBase = *i;
}
}
//计算出各点与基点构成的向量
for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end();) {
//排除与基点相同的点,避免后面的排序计算中出现除0错误
if (*i == ptBase) {
i = vecSrc.erase(i);
}
else {
//方向由基点到目标点
i->x -= ptBase.x, i->y -= ptBase.y;
++i;
}
}
//按各向量与横坐标之间的夹角排序
sort(vecSrc.begin(), vecSrc.end(), &CompareVector);
//删除相同的向量
vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end());
//计算得到首尾依次相联的向量
for (PTARRAY::reverse_iterator ri = vecSrc.rbegin();
ri != vecSrc.rend() - ; ++ri) {
PTARRAY::reverse_iterator riNext = ri + ;
//向量三角形计算公式
ri->x -= riNext->x, ri->y -= riNext->y;
}
//依次删除不在凸包上的向量
for (PTARRAY::iterator i = vecSrc.begin() + ; i != vecSrc.end(); ++i) {
//回溯删除旋转方向相反的向量,使用外积判断旋转方向
for (PTARRAY::iterator iLast = i - ; iLast != vecSrc.begin();) {
int v1 = i->x * iLast->y, v2 = i->y * iLast->x;
//如果叉积小于0,则无没有逆向旋转
//如果叉积等于0,还需判断方向是否相逆
if (v1 < v2 || (v1 == v2 && i->x * iLast->x > &&
i->y * iLast->y > )) {
break;
}
//删除前一个向量后,需更新当前向量,与前面的向量首尾相连
//向量三角形计算公式
i->x += iLast->x, i->y += iLast->y;
iLast = (i = vecSrc.erase(iLast)) - ;
}
}
//将所有首尾相连的向量依次累加,换算成坐标
vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y;
for (PTARRAY::iterator i = vecSrc.begin() + ; i != vecSrc.end(); ++i) {
i->x += (i - )->x, i->y += (i - )->y;
}
//添加基点,全部的凸包计算完成
vecSrc.push_back(ptBase);
} int main(void) {
int nPtCnt = ; //生成的随机点数
PTARRAY vecSrc, vecCH;
for (int i = ; i < nPtCnt; ++i) {
POINT ptIn = { rand() % , rand() % };
vecSrc.push_back(ptIn);
cout << ptIn.x << ", " << ptIn.y << endl;
}
CalcConvexHull(vecSrc);
cout << "\nConvex Hull:\n";
for (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end(); ++i) {
cout << i->x << ", " << i->y << endl;
}
return ;
}

参考博客: http://www.cnblogs.com/devymex/archive/2010/08/09/1795392.html

endl;

计算几何---凸包问题(Graham/Andrew Scan )的更多相关文章

  1. 【计算几何】二维凸包——Graham's Scan法

    凸包 点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内.右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包. 一组平面上的点, ...

  2. 凸包模板——Graham扫描法

    凸包模板--Graham扫描法 First 标签: 数学方法--计算几何 题目:洛谷P2742[模板]二维凸包/[USACO5.1]圈奶牛Fencing the Cows yyb的讲解:https:/ ...

  3. HDU 4667 Building Fence 计算几何 凸包+圆

    1.三角形的所有端点 2.过所有三角形的端点对所有圆做切线,得到所有切点. 3.做任意两圆的外公切线,得到所有切点. 对上述所有点求凸包,标记每个点是三角形上的点还是某个圆上的点. 求完凸包后,因为所 ...

  4. 凸包问题 Graham Scan

    2020-01-09 15:14:21 凸包问题是计算几何的核心问题,并且凸包问题的研究已经持续了好多年,这中间涌现出了一大批优秀的算法. 凸包问题的最优解法是Graham Scan算法,该算法可以保 ...

  5. 凸包问题——Graham Scan

    Graham Scan 概述: 对于凸多边形的定义不在这里做详细叙述,这里给出算法的实现原理. Step 1: 找出x值最小的点的集合,从其中找出y值最小的点作为初始点 Step 2: 获得新序列后, ...

  6. Graham's Scan法求解凸包问题

    概念 凸包(Convex Hull)是一个计算几何(图形学)中的概念.用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的.严谨的定义和相关概念参 ...

  7. 计算几何--求凸包模板--Graham算法--poj 1113

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28157   Accepted: 9401 Description ...

  8. 计算几何-凸包-toleft test

    toLeftTest toLeftTest是判断一个点是否在有向直线左侧的算法. 当点s位于向量pq左侧时,toLeftTest返回true.当点s位于向量pq右侧时,toLeftTest返回fals ...

  9. 计算几何-凸包算法 Python实现与Matlab动画演示

    凸包算法是计算几何中的最经典问题之一了.给定一个点集,计算其凸包.凸包是什么就不罗嗦了 本文给出了<计算几何——算法与应用>中一书所列凸包算法的Python实现和Matlab实现,并给出了 ...

随机推荐

  1. ftp中ftpClient类的API

    org.apache.commons.NET.ftp  Class FTPClient类FTPClient java.lang.Object java.lang.Object继承 org.apache ...

  2. 3A - Holding Bin-Laden Captive!

    We all know that Bin-Laden is a notorious terrorist, and he has disappeared for a long time. But rec ...

  3. python消息队列Queue

    实例1:消息队列Queue,不要将文件命名为"queue.py",否则会报异常"ImportError: cannot import name 'Queue'" ...

  4. 在开发node.js中,关于使用VS2013插件出现一直读取资源的问题

    情况描述: 1.安装了VS2013: 2.安装了VS开发node.js的插件; 3.打开以前的工程文件,有的可以打开,有的打不开.而且打不开的始终停留在读取资源的界面.很痛苦的.等半天都没有反应.到底 ...

  5. UI设计教程分享:Ps合成炫酷机械姬

    本次给大家分享一个通过PS合成一个炫酷的机械姬,在这个教程里给大家展示图像的色彩处理.人物光影塑造和创意实现及细节处理,教程比较简单,创意十足,看过<机械姬>电影的同学们一定知道这个有多炫 ...

  6. 前端js数据排序

    销量统计系统中国地图热力分布图需要显示一个各省区销量列表,并按从多到少排序.本着轻易不修改后台数据源的原则,决定在前端进行修改实现.其实也容易实现,将数据存放一个数据<省区名称,销量>,然 ...

  7. 常见CSS

    .login_top_bg { background-image: url(/pcssc/images/login/login-top-bg.gif); background-repeat: repe ...

  8. Python终端彩色字体的输出

    实现过程: 终端的字符颜色是用转义序列控制的,是文本模式下的系统显示功能,和具体的语言无关. 转义序列是以ESC开头,即用\033来完成(ESC的ASCII码用十进制表示是27,用八进制表示就是033 ...

  9. Linux下进行程序设计时,关于库的使用:

    一.gcc/g++命令中关于库的参数: -shared: 该选项指定生成动态连接库: -fPIC:表示编译为位置独立(地址无关)的代码,不用此选项的话,编译后的代码是位置相关的,所以动态载入时,是通过 ...

  10. *1LL在c++中的意义

    LL其实代表long long,*1LL是为了在计算时,把int类型的变量转化为long long,然后再赋值给long long类型的变量 ANS=1LL*num*((1LL)*n*(n-1))/2 ...