一本通1645Fibonacci
1645:Fibonacci
时间限制: 1000 ms 内存限制: 524288 KB
【题目描述】
原题来自:POJ 3070
我们知道斐波那契数列 F0=0,F1=1,Fn=Fn−1+Fn−2。
求 Fn mod 104 。
【输入】
多组数据,每组数据一行,一个整数 n。
输入以 −1 结束。
【输出】
对于每组数据,输出 Fn mod 104 。
【输入样例】
0
9
999999999
1000000000
-1
【输出样例】
0
34
626
6875
【提示】
数据范围与提示:
对于全部数据,0≤n≤109 。
sol:一个板子
/*
1 1
1 0
*/
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Mod=;
int n;
int ans[][],power[][],a[][],c[][];
inline void Ad(int &x,int y)
{
x+=y;
x-=(x>=Mod)?Mod:;
return;
}
int main()
{
while(true)
{
int i,j,k;
R(n);
if(n==-) break;
if(n==) {puts(""); continue;}
n--;
ans[][]=; ans[][]=;
power[][]=power[][]=; power[][]=power[][]=;
a[][]=a[][]=a[][]=; a[][]=;
while(n)
{
if(n&)
{
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],power[i][k]*a[k][j]%Mod);
}
memmove(power,c,sizeof power);
}
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],a[i][k]*a[k][j]%Mod);
}
memmove(a,c,sizeof a);
n>>=;
}
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],ans[i][k]*power[k][j]%Mod);
}
memmove(ans,c,sizeof ans);
Wl(ans[][]);
}
return ;
}
/*
input
0
9
999999999
1000000000
-1
output
0
34
626
6875
*/
一本通1645Fibonacci的更多相关文章
- CJOJ 2040 【一本通】分组背包(动态规划)
CJOJ 2040 [一本通]分组背包(动态规划) Description 一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2, ...
- CJOJ 2307 【一本通】完全背包(动态规划)
CJOJ 2307 [一本通]完全背包(动态规划) Description 设有n种物品,每种物品有一个重量及一个价值.但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干 ...
- CJOJ 2022 【一本通】简单的背包问题(搜索)
CJOJ 2022 [一本通]简单的背包问题(搜索) Description 设有一个背包可以放入的物品重量为S,现有n件物品,重量分别是w1,w2,w3,-wn. 问能否从这n件物品中选择若干件放入 ...
- CJOJ 2044 【一本通】最长公共子序列(动态规划)
CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...
- 【一本通1329:【例8.2】细胞&&洛谷P1451 求细胞数量】
1329:[例8.2]细胞 [题目描述] 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.如: 阵列 4 10 023 ...
- 一本通 1223:An Easy Problem
\[传送门qwq\] [题目描述] 给定一个正整数N,求最小的.比N大的正整数M,使得M与N的二进制表示中有相同数目的1. 举个例子,假如给定的N为78,其二进制表示为1001110,包含4个1,那么 ...
- 一本通之 一堆迷宫 (Dungeon Master&走出迷宫&走迷宫)
一本通在线崩溃....... . 有图有真相 这是个三维迷宫,其实和二位迷宫差不多,只是方向多加了2个. 但这个题的输入十分恶心,一度被坑的用cin.ignore(),但还是不过... 它的正确输入方 ...
- 一本通 1212:LETTERS
题目描述 给出一个roe×col的大写字母矩阵,一开始的位置为左上角,你可以向上下左右四个方向移动,并且不能移向曾经经过的字母.问最多可以经过几个字母. 输入 第一行,输入字母矩阵行数R和列数S,1≤ ...
- 【洛谷p2669】【一本通p1100】金币
(今天高产) 金币[传送门] 洛谷上的算法标签 自我感觉主要靠循环 这道题是2015年NOIp普及组的题,其实还是很简单的.但为什么写这道题呢? 这道题第一次接触是在一本通刷题的时候,当时学循环结构, ...
随机推荐
- JAVA框架 Spring AOP底层原理
一:AOP(Aspect Oriented Programming)面向切面编程. 底层实现原理是java的动态代理:1.jdk的动态代理.2.spring的cglib代理. jdk的动态代理需要被代 ...
- neo4j----创建索引
创建索引 create index on:Student(name) 删除索引 drop index on:Student(name) 创建唯一索引 create constraint on (s:T ...
- SNAT和DNAT
1.SNAT iptables防火墙 Centos6.6 64位 iptables 内网:eth0 172.16.4.1 外网:eth 112.112.112.112/24 当有用户访问公网时,修改用 ...
- Json.NET如何避免循环引用
Json.NET在将对象序列化为Json字符串的时候,如果对象有循环引用的属性或字段,那么会导致Json.NET抛出循环引用异常. 有两种方法可以解决这个问题: 1.在对象循环引用的属性上打上[Jso ...
- linux 《vmware下克隆的centos无法配置固定ip》
1.用vmware克隆一个centos 2.进入centos,打开命令行输入ifconfig,运行后发现没有eth0 3.运行网卡启动命令ifconfig eth0 up,再运行ifconfig wa ...
- SonarQube6.7.4安装部署
1.准备工作 https://www.sonarqube.org Sonar 是一个用于代码质量管理的开放平台.通过插件机制,Sonar 可以集成不同的测试工具,代码分析工具,以及持续集成工具.比如p ...
- linux中原子操作实现方式
原子操作提供了指令原子执行,中间没有中断.就像原子被认为是不可分割颗粒一样,原子操作(atomic operation)是不可分割的操作. 如下面简单的例子: Thread 1 ...
- struts2_maven_learning
以下为学习maven struts2 的学习过程,现记录如下. 1.创建一个完善的maven程序 maven:(jar) 1)maven project 2)facet 3)pom.xml,depen ...
- 20155331 《网络对抗》 Exp6 信息搜集与漏洞扫描
20155331 <网络对抗> Exp6 信息搜集与漏洞扫描 实验问题回答 哪些组织负责DNS,IP的管理 答:美国政府授权ICANN统一管理全球根服务器,负责全球的域名根服务器.DNS和 ...
- 【WPF】WPF截屏
原文:[WPF]WPF截屏 引言 .NET的截图控件在网上流传得不多啊,难得发现一个精品截图控件( 传送门),但是无奈是winform的.后来又找到一个周银辉做的WPF截图(继续传送门),发现截屏是实 ...