1、tensorflow的基本运作
为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始:

import tensorflow as tf
#定义‘符号’变量,也称为占位符
a = tf.placeholder("float")
b = tf.placeholder("float")

y = tf.mul(a, b) #构造一个op节点

sess = tf.Session()#建立会话
#运行会话,输入数据,并计算节点,同时打印结果
print sess.run(y, feed_dict={a: 3, b: 3})
# 任务完成, 关闭会话.
sess.close()
1
2
3
4
5
6
7
8
9
10
11
12
其中tf.mul(a, b)函数便是tf的一个基本的算数运算,接下来介绍跟多的相关函数。

2、tf函数
TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.
并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进。大部分核相关的操作都是设备相关的实现,比如GPU。下面是一些重要的操作/核:
1
2
操作组 操作
Maths Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal
Array Concat, Slice, Split, Constant, Rank, Shape, Shuffle
Matrix MatMul, MatrixInverse, MatrixDeterminant
Neuronal Network SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool
Checkpointing Save, Restore
Queues and syncronizations Enqueue, Dequeue, MutexAcquire, MutexRelease
Flow control Merge, Switch, Enter, Leave, NextIteration
TensorFlow的算术操作如下:
操作 描述
tf.add(x, y, name=None) 求和
tf.sub(x, y, name=None) 减法
tf.mul(x, y, name=None) 乘法
tf.div(x, y, name=None) 除法
tf.mod(x, y, name=None) 取模
tf.abs(x, name=None) 求绝对值
tf.neg(x, name=None) 取负 (y = -x).
tf.sign(x, name=None) 返回符号 y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.
tf.inv(x, name=None) 取反
tf.square(x, name=None) 计算平方 (y = x * x = x^2).
tf.round(x, name=None) 舍入最接近的整数
# ‘a’ is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
tf.sqrt(x, name=None) 开根号 (y = \sqrt{x} = x^{1/2}).
tf.pow(x, y, name=None) 幂次方
# tensor ‘x’ is [[2, 2], [3, 3]]
# tensor ‘y’ is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
tf.exp(x, name=None) 计算e的次方
tf.log(x, name=None) 计算log,一个输入计算e的ln,两输入以第二输入为底
tf.maximum(x, y, name=None) 返回最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) 返回最小值 (x < y ? x : y)
tf.cos(x, name=None) 三角函数cosine
tf.sin(x, name=None) 三角函数sine
tf.tan(x, name=None) 三角函数tan
tf.atan(x, name=None) 三角函数ctan
张量操作Tensor Transformations
数据类型转换Casting
操作 描述
tf.string_to_number
(string_tensor, out_type=None, name=None) 字符串转为数字
tf.to_double(x, name=’ToDouble’) 转为64位浮点类型–float64
tf.to_float(x, name=’ToFloat’) 转为32位浮点类型–float32
tf.to_int32(x, name=’ToInt32’) 转为32位整型–int32
tf.to_int64(x, name=’ToInt64’) 转为64位整型–int64
tf.cast(x, dtype, name=None) 将x或者x.values转换为dtype
# tensor a is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32
形状操作Shapes and Shaping
操作 描述
tf.shape(input, name=None) 返回数据的shape
# ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]
tf.size(input, name=None) 返回数据的元素数量
# ‘t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12
tf.rank(input, name=None) 返回tensor的rank
注意:此rank不同于矩阵的rank,
tensor的rank表示一个tensor需要的索引数目来唯一表示任何一个元素
也就是通常所说的 “order”, “degree”或”ndims”
#’t’ is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
# shape of tensor ‘t’ is [2, 2, 3]
rank(t) ==> 3
tf.reshape(tensor, shape, name=None) 改变tensor的形状
# tensor ‘t’ is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor ‘t’ has shape [9]
reshape(t, [3, 3]) ==>
[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
#如果shape有元素[-1],表示在该维度打平至一维
# -1 将自动推导得为 9:
reshape(t, [2, -1]) ==>
[[1, 1, 1, 2, 2, 2, 3, 3, 3],
[4, 4, 4, 5, 5, 5, 6, 6, 6]]
tf.expand_dims(input, dim, name=None) 插入维度1进入一个tensor中
#该操作要求-1-input.dims()
# ‘t’ is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1] <= dim <= input.dims()
切片与合并(Slicing and Joining)
操作 描述
tf.slice(input_, begin, size, name=None) 对tensor进行切片操作
其中size[i] = input.dim_size(i) - begin[i]
该操作要求 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]
#’input’ is
#[[[1, 1, 1], [2, 2, 2]],[[3, 3, 3], [4, 4, 4]],[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==>
[[[3, 3, 3],
[4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==>
[[[3, 3, 3]],
[[5, 5, 5]]]
tf.split(split_dim, num_split, value, name=’split’) 沿着某一维度将tensor分离为num_split tensors
# ‘value’ is a tensor with shape [5, 30]
# Split ‘value’ into 3 tensors along dimension 1
split0, split1, split2 = tf.split(1, 3, value)
tf.shape(split0) ==> [5, 10]
tf.concat(concat_dim, values, name=’concat’) 沿着某一维度连结tensor
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
如果想沿着tensor一新轴连结打包,那么可以:
tf.concat(axis, [tf.expand_dims(t, axis) for t in tensors])
等同于tf.pack(tensors, axis=axis)
tf.pack(values, axis=0, name=’pack’) 将一系列rank-R的tensor打包为一个rank-(R+1)的tensor
# ‘x’ is [1, 4], ‘y’ is [2, 5], ‘z’ is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]]
# 沿着第一维pack
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
等价于tf.pack([x, y, z]) = np.asarray([x, y, z])
tf.reverse(tensor, dims, name=None) 沿着某维度进行序列反转
其中dim为列表,元素为bool型,size等于rank(tensor)
# tensor ‘t’ is
[[[[ 0, 1, 2, 3],
#[ 4, 5, 6, 7],

#[ 8, 9, 10, 11]],
#[[12, 13, 14, 15],
#[16, 17, 18, 19],
#[20, 21, 22, 23]]]]
# tensor ‘t’ shape is [1, 2, 3, 4]
# ‘dims’ is [False, False, False, True]
reverse(t, dims) ==>
[[[[ 3, 2, 1, 0],
[ 7, 6, 5, 4],
[ 11, 10, 9, 8]],
[[15, 14, 13, 12],
[19, 18, 17, 16],
[23, 22, 21, 20]]]]
tf.transpose(a, perm=None, name=’transpose’) 调换tensor的维度顺序
按照列表perm的维度排列调换tensor顺序,
如为定义,则perm为(n-1…0)
# ‘x’ is [[1 2 3],[4 5 6]]
tf.transpose(x) ==> [[1 4], [2 5],[3 6]]
# Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4],[2 5], [3 6]]
tf.gather(params, indices, validate_indices=None, name=None) 合并索引indices所指示params中的切片

tf.one_hot
(indices, depth, on_value=None, off_value=None,
axis=None, dtype=None, name=None) indices = [0, 2, -1, 1]
depth = 3
on_value = 5.0
off_value = 0.0
axis = -1
#Then output is [4 x 3]:
output =
[5.0 0.0 0.0] // one_hot(0)
[0.0 0.0 5.0] // one_hot(2)
[0.0 0.0 0.0] // one_hot(-1)
[0.0 5.0 0.0] // one_hot(1)
矩阵相关运算
操作 描述
tf.diag(diagonal, name=None) 返回一个给定对角值的对角tensor
# ‘diagonal’ is [1, 2, 3, 4]
tf.diag(diagonal) ==>
[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
tf.diag_part(input, name=None) 功能与上面相反
tf.trace(x, name=None) 求一个2维tensor足迹,即对角值diagonal之和
tf.transpose(a, perm=None, name=’transpose’) 调换tensor的维度顺序
按照列表perm的维度排列调换tensor顺序,
如为定义,则perm为(n-1…0)
# ‘x’ is [[1 2 3],[4 5 6]]
tf.transpose(x) ==> [[1 4], [2 5],[3 6]]
# Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4],[2 5], [3 6]]
tf.matmul(a, b, transpose_a=False,
transpose_b=False, a_is_sparse=False,
b_is_sparse=False, name=None) 矩阵相乘
tf.matrix_determinant(input, name=None) 返回方阵的行列式
tf.matrix_inverse(input, adjoint=None, name=None) 求方阵的逆矩阵,adjoint为True时,计算输入共轭矩阵的逆矩阵
tf.cholesky(input, name=None) 对输入方阵cholesky分解,
即把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解A=LL^T
tf.matrix_solve(matrix, rhs, adjoint=None, name=None) 求解tf.matrix_solve(matrix, rhs, adjoint=None, name=None)
matrix为方阵shape为[M,M],rhs的shape为[M,K],output为[M,K]
复数操作
操作 描述
tf.complex(real, imag, name=None) 将两实数转换为复数形式
# tensor ‘real’ is [2.25, 3.25]
# tensor imag is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
tf.complex_abs(x, name=None) 计算复数的绝对值,即长度。
# tensor ‘x’ is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
tf.conj(input, name=None) 计算共轭复数
tf.imag(input, name=None)
tf.real(input, name=None) 提取复数的虚部和实部
tf.fft(input, name=None) 计算一维的离散傅里叶变换,输入数据类型为complex64
归约计算(Reduction)
操作 描述
tf.reduce_sum(input_tensor, reduction_indices=None,
keep_dims=False, name=None) 计算输入tensor元素的和,或者安照reduction_indices指定的轴进行求和
# ‘x’ is [[1, 1, 1]
# [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
tf.reduce_prod(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 计算输入tensor元素的乘积,或者安照reduction_indices指定的轴进行求乘积
tf.reduce_min(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 求tensor中最小值
tf.reduce_max(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 求tensor中最大值
tf.reduce_mean(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 求tensor中平均值
tf.reduce_all(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 对tensor中各个元素求逻辑’与’
# ‘x’ is
# [[True, True]
# [False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]
tf.reduce_any(input_tensor,
reduction_indices=None,
keep_dims=False, name=None) 对tensor中各个元素求逻辑’或’
tf.accumulate_n(inputs, shape=None,
tensor_dtype=None, name=None) 计算一系列tensor的和
# tensor ‘a’ is [[1, 2], [3, 4]]
# tensor b is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]
tf.cumsum(x, axis=0, exclusive=False,
reverse=False, name=None) 求累积和
tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
分割(Segmentation)
操作 描述
tf.segment_sum(data, segment_ids, name=None) 根据segment_ids的分段计算各个片段的和
其中segment_ids为一个size与data第一维相同的tensor
其中id为int型数据,最大id不大于size
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
==>[[0 0 0 0]
[5 6 7 8]]
上面例子分为[0,1]两id,对相同id的data相应数据进行求和,
并放入结果的相应id中,
且segment_ids只升不降
tf.segment_prod(data, segment_ids, name=None) 根据segment_ids的分段计算各个片段的积
tf.segment_min(data, segment_ids, name=None) 根据segment_ids的分段计算各个片段的最小值
tf.segment_max(data, segment_ids, name=None) 根据segment_ids的分段计算各个片段的最大值
tf.segment_mean(data, segment_ids, name=None) 根据segment_ids的分段计算各个片段的平均值
tf.unsorted_segment_sum(data, segment_ids,
num_segments, name=None) 与tf.segment_sum函数类似,
不同在于segment_ids中id顺序可以是无序的
tf.sparse_segment_sum(data, indices,
segment_ids, name=None) 输入进行稀疏分割求和
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
# Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
==> [[0 0 0 0]]
对原data的indices为[0,1]位置的进行分割,
并按照segment_ids的分组进行求和
序列比较与索引提取(Sequence Comparison and Indexing)
操作 描述
tf.argmin(input, dimension, name=None) 返回input最小值的索引index
tf.argmax(input, dimension, name=None) 返回input最大值的索引index
tf.listdiff(x, y, name=None) 返回x,y中不同值的索引
tf.where(input, name=None) 返回bool型tensor中为True的位置
# ‘input’ tensor is
#[[True, False]
#[True, False]]
# ‘input’ 有两个’True’,那么输出两个坐标值.
# ‘input’的rank为2, 所以每个坐标为具有两个维度.
where(input) ==>
[[0, 0],
[1, 0]]
tf.unique(x, name=None) 返回一个元组tuple(y,idx),y为x的列表的唯一化数据列表,
idx为x数据对应y元素的index
# tensor ‘x’ is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
tf.invert_permutation(x, name=None) 置换x数据与索引的关系
# tensor x is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]
神经网络(Neural Network)
激活函数(Activation Functions)
操作 描述
tf.nn.relu(features, name=None) 整流函数:max(features, 0)
tf.nn.relu6(features, name=None) 以6为阈值的整流函数:min(max(features, 0), 6)
tf.nn.elu(features, name=None) elu函数,exp(features) - 1 if < 0,否则features
Exponential Linear Units (ELUs)
tf.nn.softplus(features, name=None) 计算softplus:log(exp(features) + 1)
tf.nn.dropout(x, keep_prob,
noise_shape=None, seed=None, name=None) 计算dropout,keep_prob为keep概率
noise_shape为噪声的shape
tf.nn.bias_add(value, bias, data_format=None, name=None) 对value加一偏置量
此函数为tf.add的特殊情况,bias仅为一维,
函数通过广播机制进行与value求和,
数据格式可以与value不同,返回为与value相同格式
tf.sigmoid(x, name=None) y = 1 / (1 + exp(-x))
tf.tanh(x, name=None) 双曲线切线激活函数
卷积函数(Convolution)
操作 描述
tf.nn.conv2d(input, filter, strides, padding,
use_cudnn_on_gpu=None, data_format=None, name=None) 在给定的4D input与 filter下计算2D卷积
输入shape为 [batch, height, width, in_channels]
tf.nn.conv3d(input, filter, strides, padding, name=None) 在给定的5D input与 filter下计算3D卷积
输入shape为[batch, in_depth, in_height, in_width, in_channels]
池化函数(Pooling)
操作 描述
tf.nn.avg_pool(value, ksize, strides, padding,
data_format=’NHWC’, name=None) 平均方式池化
tf.nn.max_pool(value, ksize, strides, padding,
data_format=’NHWC’, name=None) 最大值方法池化
tf.nn.max_pool_with_argmax(input, ksize, strides,
padding, Targmax=None, name=None) 返回一个二维元组(output,argmax),最大值pooling,返回最大值及其相应的索引
tf.nn.avg_pool3d(input, ksize, strides,
padding, name=None) 3D平均值pooling
tf.nn.max_pool3d(input, ksize, strides,
padding, name=None) 3D最大值pooling
数据标准化(Normalization)
操作 描述
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) 对维度dim进行L2范式标准化
output = x / sqrt(max(sum(x**2), epsilon))
tf.nn.sufficient_statistics(x, axes, shift=None,
keep_dims=False, name=None) 计算与均值和方差有关的完全统计量
返回4维元组,*元素个数,*元素总和,*元素的平方和,*shift结果
参见算法介绍
tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift, name=None) 基于完全统计量计算均值和方差
tf.nn.moments(x, axes, shift=None,
name=None, keep_dims=False) 直接计算均值与方差
损失函数(Losses)
操作 描述
tf.nn.l2_loss(t, name=None) output = sum(t ** 2) / 2
分类函数(Classification)
操作 描述
tf.nn.sigmoid_cross_entropy_with_logits
(logits, targets, name=None)* 计算输入logits, targets的交叉熵
tf.nn.softmax(logits, name=None) 计算softmax
softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
tf.nn.log_softmax(logits, name=None) logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
tf.nn.softmax_cross_entropy_with_logits
(logits, labels, name=None) 计算logits和labels的softmax交叉熵
logits, labels必须为相同的shape与数据类型
tf.nn.sparse_softmax_cross_entropy_with_logits
(logits, labels, name=None) 计算logits和labels的softmax交叉熵
tf.nn.weighted_cross_entropy_with_logits
(logits, targets, pos_weight, name=None) 与sigmoid_cross_entropy_with_logits()相似,
但给正向样本损失加了权重pos_weight
符号嵌入(Embeddings)
操作 描述
tf.nn.embedding_lookup
(params, ids, partition_strategy=’mod’,
name=None, validate_indices=True) 根据索引ids查询embedding列表params中的tensor值
如果len(params) > 1,id将会安照partition_strategy策略进行分割
1、如果partition_strategy为”mod”,
id所分配到的位置为p = id % len(params)
比如有13个ids,分为5个位置,那么分配方案为:
[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]
2、如果partition_strategy为”div”,那么分配方案为:
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]
tf.nn.embedding_lookup_sparse(params,
sp_ids, sp_weights, partition_strategy=’mod’,
name=None, combiner=’mean’) 对给定的ids和权重查询embedding
1、sp_ids为一个N x M的稀疏tensor,
N为batch大小,M为任意,数据类型int64
2、sp_weights的shape与sp_ids的稀疏tensor权重,
浮点类型,若为None,则权重为全’1’
循环神经网络(Recurrent Neural Networks)
操作 描述
tf.nn.rnn(cell, inputs, initial_state=None, dtype=None,
sequence_length=None, scope=None) 基于RNNCell类的实例cell建立循环神经网络
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None,
initial_state=None, dtype=None, parallel_iterations=None,
swap_memory=False, time_major=False, scope=None) 基于RNNCell类的实例cell建立动态循环神经网络
与一般rnn不同的是,该函数会根据输入动态展开
返回(outputs,state)
tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name,
sequence_length=None, scope=None) 可储存调试状态的RNN网络
tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,
initial_state_fw=None, initial_state_bw=None, dtype=None,
sequence_length=None, scope=None) 双向RNN, 返回一个3元组tuple
(outputs, output_state_fw, output_state_bw)
— tf.nn.rnn简要介绍—
cell: 一个RNNCell实例
inputs: 一个shape为[batch_size, input_size]的tensor
initial_state: 为RNN的state设定初值,可选
sequence_length:制定输入的每一个序列的长度,size为[batch_size],值范围为[0, T)的int型数据
其中T为输入数据序列的长度
@
@针对输入batch中序列长度不同,所设置的动态计算机制
@对于在时间t,和batch的b行,有
(output, state)(b, t) = ? (zeros(cell.output_size), states(b, sequence_length(b) - 1)) : cell(input(b, t), state(b, t - 1))

求值网络(Evaluation)
操作 描述
tf.nn.top_k(input, k=1, sorted=True, name=None) 返回前k大的值及其对应的索引
tf.nn.in_top_k(predictions, targets, k, name=None) 返回判断是否targets索引的predictions相应的值
是否在在predictions前k个位置中,
返回数据类型为bool类型,len与predictions同
监督候选采样网络(Candidate Sampling)
对于有巨大量的多分类与多标签模型,如果使用全连接softmax将会占用大量的时间与空间资源,所以采用候选采样方法仅使用一小部分类别与标签作为监督以加速训练。

操作 描述
Sampled Loss Functions
tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled,
num_classes, num_true=1, sampled_values=None,
remove_accidental_hits=False, partition_strategy=’mod’,
name=’nce_loss’) 返回noise-contrastive的训练损失结果
tf.nn.sampled_softmax_loss(weights, biases, inputs, labels,
num_sampled, num_classes, num_true=1, sampled_values=None,
remove_accidental_hits=True, partition_strategy=’mod’,
name=’sampled_softmax_loss’) 返回sampled softmax的训练损失
参考- Jean et al., 2014第3部分
Candidate Samplers
tf.nn.uniform_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, seed=None, name=None) 通过均匀分布的采样集合
返回三元tuple
1、sampled_candidates 候选集合。
2、期望的true_classes个数,为浮点值
3、期望的sampled_candidates个数,为浮点值
tf.nn.log_uniform_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, seed=None, name=None) 通过log均匀分布的采样集合,返回三元tuple
tf.nn.learned_unigram_candidate_sampler
(true_classes, num_true, num_sampled, unique,
range_max, seed=None, name=None) 根据在训练过程中学习到的分布状况进行采样
返回三元tuple
tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true,
num_sampled, unique, range_max, vocab_file=”,
distortion=1.0, num_reserved_ids=0, num_shards=1,
shard=0, unigrams=(), seed=None, name=None) 基于所提供的基本分布进行采样
保存与恢复变量
操作 描述
类tf.train.Saver(Saving and Restoring Variables)
tf.train.Saver.__init__(var_list=None, reshape=False,
sharded=False, max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0,
name=None, restore_sequentially=False,
saver_def=None, builder=None) 创建一个存储器Saver
var_list定义需要存储和恢复的变量
tf.train.Saver.save(sess, save_path, global_step=None,
latest_filename=None, meta_graph_suffix=’meta’,
write_meta_graph=True) 保存变量
tf.train.Saver.restore(sess, save_path) 恢复变量
tf.train.Saver.last_checkpoints 列出最近未删除的checkpoint 文件名
tf.train.Saver.set_last_checkpoints(last_checkpoints) 设置checkpoint文件名列表
tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time) 设置checkpoint文件名列表和时间戳
---------------------
作者:林海山波
来源:CSDN
原文:https://blog.csdn.net/lenbow/article/details/52152766
版权声明:本文为博主原创文章,转载请附上博文链接!

TensorFlow常用API汇总的更多相关文章

  1. TensorFlow 常用函数汇总

    本文介绍了tensorflow的常用函数,源自网上整理. TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU ...

  2. VSTO之PowerPoint(PPT)插件开发常用API汇总

    VSTO简介 VSTO(Visual Studio Tools for Office )是VBA的替代,使得开发Office应用程序更加简单,并且用VSTO来开发office应用程序可以使用Visua ...

  3. java selenium常用API汇总

    (WebElement.iFrame.select.alert.浏览器窗口.事件.js)     一 WebElement相关方法 1.点击操作 WebElement button = driver. ...

  4. js常用API汇总(转)

    typeof(); 检测数据类型 String(); 转换成字符串 parseInt(); 解析出一个string或number的整数部分 parseFloat(); 解析出一个string的浮点数部 ...

  5. java poi reader常用API汇总

    注意:(1)判断行的最大数量建议使用sheet.getLastRowNum();(2)判断每行最大列数建议使用row.getLastCellNum(); [JAVA]特别注意,POI中getLastR ...

  6. Java反射常用API汇总

    “JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意方法和属性” 一.类对象的获取 1.通过对象获取 Object obj = ne ...

  7. 常用API接口汇总

    下面列举了100多个国内常用API接口,并按照 笔记.出行.词典.电商.地图.电影.即时通讯.开发者网站.快递查询.旅游.社交.视频.天气.团队协作.图片与图像处理.外卖.消息推送.音乐.云.语义识别 ...

  8. Java | 个人总结的Java常用API手册汇总

    目录 常用API JavaAPI 1 java.lang String StringBuilder Integer parseXxx Math Object System Throwable Thre ...

  9. 常用API接口

    引用  常用API接口汇总

随机推荐

  1. 可以获取JVM信息的一些管理工具类

    一些可以获取JVM信息的java工具类 BufferPoolMXBean.class ClassLoadingMXBean.class CompilationMXBean.class GarbageC ...

  2. CVE-2017-8046(Spring Data Rest RCE)

    环境搭建参考第一个链接,springboot启动文件如下,不同的启类,将Application.class修改一下就可以了,直接debug.注意:默认版本是2.0.3版本,修改成低版本,看一下mvn下 ...

  3. 物理standby database的日常维护

    1.停止Standby select process, status from v$managed_standby; --查看备库是否在应用日志进行恢复 alter database recover ...

  4. Jmeter上传下载文件

    每次使用时都会忘记,此处是存储网路上通用的方式.   1.上传文件 记得勾选“use multipart/form-data for post”,表明此请求包含文件信息.在信息请求头中,需加入“Con ...

  5. HTTP请求header信息讲解

    HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.这两种类型的消息由一个起始行,一个或者多个头域,一个只是头域结束的空行和可选的消息体组成.HTTP的头域包括通用头,请求头,响应头和 ...

  6. uptime 负载 top

    1.首先怎样知道我的CPU是几核呢? 使用以下命令可以直接获得CPU核心数目 grep 'model name' /proc/cpuinfo | wc -l 2.单核CPU - 单车道 - 数字在0. ...

  7. Modelsim SE 和 Quartus II 编译器(综合器)的区别

    当对目标模块进行RTL描述后,习惯先会用Modelsim做一下功能仿真.当我们写好Tensbench文件,直接在Modelsim SE中对源文件(design和Testbench)进行编译时,如果源文 ...

  8. 20155227《网络对抗》Exp2 后门原理与实践

    20155227<网络对抗>Exp2 后门原理与实践 基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 在非官方网站下载软件时,后门很可能被捆绑在软件中. 攻击者利用欺 ...

  9. 洛咕 P4474 王者之剑

    宝石只能在偶数秒取到,假设有一个宝石在奇数秒取到了,那么上一秒是偶数秒,在上一秒的时候这里的宝石就没了. 相邻的两个宝石不能同时取,很显然,先取一块,那么这是偶数秒,取完了这一块之后相邻的都没了. 只 ...

  10. <转>性能测试浅谈

    本文主要针对WEB系统的性能测试.不涉及具体的执行操作,只是本人对性能测试的一点理解和认识. 性能测试的目的,简单说其实就是为了获取待测系统的响应时间.吞吐量.稳定性.容量等信息.而发现一些具体的性能 ...