1. 线性DP 887. 鸡蛋掉落 (DP+二分)
887. 鸡蛋掉落 (DP+二分)
https://leetcode-cn.com/problems/super-egg-drop/
/*
首先分析1个蛋,1个蛋的话,最坏情况需要N次,每次只能从0 1 2 。。。开始
如果蛋的个数随便用,或者说2的k次方大于等于N楼层高度,则可以利用二分。
如果蛋的个数为2,100层楼
1 。。。 100
比如第一次从10,如果碎了,那么还剩一个蛋,1+10次;如果没有碎,到20层仍。如果碎了,2+10次。如果没碎。。。
所以次数是 11 12 13 14 15 16 17 18 19 ,所以最坏可能19次
所以我们要想办法,确定每次下仍的楼层 p, 0=<p1,p2,p3,p4,p5,p6,p7,p8,p9<=N 使得不管每次的次数比较均匀。即例如
p1+p2+p3+p4+p5+p6+p7+p8+p9 = 100
p2-p1=p1-1
p3-p2=p1-2
....
p1=14 p2=27 p3=39 p4=51 p5=62 p6=72 p7=81 p8=89 p9=96 p10=100
那么如果有k个蛋,那么,d[N][K]就是最坏情况下的最小次数
假设在第p层下仍,蛋碎的话 d[p-1][k-1]为p层,k-1个蛋的最小次数
蛋不碎的话,d[N-p][k] 为N-p层,k个蛋的最小次数
最坏情况就是,d[N][k] = Max(d[p-1][k-],d[N-p][k])+1
最坏情况下最小,就是要找一个合适的p使得 MIN(Max(d[p-1][k-],d[N-p][k]))其中 1=<p<=N
*/
const INT_MAX = int(^uint(0) >> 1)
func superEggDrop(K int, N int) int {
d := make([][]int,N+1)
for i:=0;i<=N;i++{
d[i] = make([]int,K+1)
} for i:=0;i<=N;i++{
d[i][1] = i
d[i][0] = 0
}
for j:=0;j<=K;j++{
d[0][j] =0
d[1][j] = 1
}
d[0][1] = 0
d[1][0] = 0
d[0][0] = 0
for i:=2;i<=N;i++{
for j:=2;j<=K;j++{
m := INT_MAX
for p:=1;p<=i;p++{
tmp := MAX(d[p-1][j-1],d[i-p][j])+1
m = MIN(tmp,m)
}
d[i][j] = m
}
}
return d[N][K]
} func MAX(i,j int) int{
if i<j{
return j
}else{
return i
}
} func MIN(i,j int) int{
if i<j{
return i
}else{
return j
}
}
复杂度分析:
- 时间复杂度:O(N^2K)O(N2K),三层
for
循环,每层循环都是线性的; - 空间复杂度:O(NK)O(NK),表格的大小
1. 线性DP 887. 鸡蛋掉落 (DP+二分)的更多相关文章
- Java实现 LeetCode 887 鸡蛋掉落(动态规划,谷歌面试题,蓝桥杯真题)
887. 鸡蛋掉落 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑. 每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去. 你知道存在楼层 F ,满足 0 < ...
- LeetCode887鸡蛋掉落——dp
题目 题目链接 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑.每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去,如果没有碎可以继续使用.你知道存在楼层 F , ...
- LeetCode 887.鸡蛋掉落(C++)
每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去. 你知道存在楼层 F ,满足 0 <= F <= N 任何从高于 F 的楼层落下的鸡蛋都会碎,从 F 楼层或比它低的楼层落下的 ...
- [LeetCode] 887. Super Egg Drop 超级鸡蛋掉落
You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is iden ...
- 记录Leetcode 鸡蛋掉落 的思路
前言 首先看一下这个题目,是Leetcode的第887题"鸡蛋掉落": 你将获得 `K` 个鸡蛋,并可以使用一栋从 `1` 到 `N` 共有 `N` 层楼的建筑. 每个蛋的功能都是 ...
- dp乱写2:论dp在不在dp中(但在dp范畴)内的应用
最近正儿八经的学习了dp,有一些题目非常明显看出来就是dp了比如说:过河卒.方格取数.导弹拦截.加分二叉树.炮兵阵地更加明显的还有:采药.装箱问题.过河.金明的预算方案.今天来谈谈dp的dp在不在dp ...
- 动态规划——区间DP,计数类DP,数位统计DP
本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种, ...
- hoj 2662 经典状压dp // MyFirst 状压dp
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2662 1.引言:用dp解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态. ...
- 成也DP,败也DP(AFO?)
不知道想说什么.. 从来没写过博客,markdown什么的也不会,凑合着看一下吧. 初中的时候开始搞OI,学了两个月后普及组爆零就退赛了. 初三直升的时候说每个人都要选竞赛,抱着混一混的心态选了信息, ...
随机推荐
- 移动吉比特H2-2光猫超级用户与密码
移动吉比特H2-2光猫超级用户与密码 超级用户名CMCCAdmin 密码aDm8H%MdA----------------版权声明:本文为CSDN博主「BenSon.Album」的原创文章,遵循CC ...
- pytest文档55-plugins插件开发
前言 前面一篇已经学会了使用hook函数改变pytest运行的结果,代码写在conftest.py文件,实际上就是本地的插件了. 当有一天你公司的小伙伴觉得你写的还不错,或者更多的小伙伴想要你这个功能 ...
- kibana-安装-通过docker
拉取镜像 docker pull kibana:7.9.1 创建用户自定义网络 docker network create esnet 运行Kibana docker run --name ...
- logstash -grok插件语法介绍
介绍 logstash拥有丰富的filter插件,它们扩展了进入过滤器的原始数据,进行复杂的逻辑处理,甚至可以无中生有的添加新的 logstash 事件到后续的流程中去!Grok 是 Logsta ...
- centOS7永久关闭防火墙(防火墙的基本使用(转)
查看防火墙状态: systemctl status firewalld.service 如图 绿的running表示防火墙开启 执行关闭命令: systemctl stop firewalld.ser ...
- mac 解决安卓模拟器链接不上网络
方法1.临时方法,每次启动都要加114.114.114.114 1.进入到下面的目录 /Users/anxiaodong/Library/Android/sdk/emulator 2.执行以下命令 e ...
- Topsis优劣解距离法 mlx代码
请参考https://blog.csdn.net/qq_36384657/article/details/98188769 mlx代码 topsis 优劣解距离法 参数说明: 分数.获奖次数.价值等 ...
- EFS加密
目录 EFS简介 EFS的特点 EFS的缺陷 EFS证书 证书的导出 证书的安装 EFS加密 方法一 方法二 EFS简介 EFS(Encrypting File System,加密文件系统)是Wind ...
- D. Concatenated Multiples 解析(思維)
Codeforce 1029 D. Concatenated Multiples 解析(思維) 今天我們來看看CF1029D 題目連結 題目 給你一個序列\(a\)和一個數字\(k\),求有幾種ind ...
- day78:luffy:前端对于token的认证&滑动验证码的实现
目录 1.前端对于token的认证 2.滑动验证码 1.滑动验证码实现的原理 2.滑动验证码的代码实现 1.配置文件 2.前端实现:Login.vue 3.后端实现:改写jwt代码 1.前端对于tok ...