洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
5
5
10
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
1 1
1 0
fn+1 fn
fn fn-1
注意n的范围
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int MOD=1e9+;
ll n;
struct mat{
ll m[][];
mat(){memset(m,,sizeof(m));}
}im,f;
void init(){
im.m[][]=im.m[][]=;
f.m[][]=f.m[][]=f.m[][]=;
}
mat mul(mat &a,mat &b){
mat c;
for(int i=;i<=;i++)
for(int k=;k<=;k++) if(a.m[i][k])
for(int j=;j<=;j++) c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]%MOD)%MOD;
return c;
}
int main(){
scanf("%lld",&n);
init();
mat ans=im;
for(;n;n>>=,f=mul(f,f))
if(n&) ans=mul(ans,f);
printf("%d",ans.m[][]);
}
P1349 广义斐波那契数列
题目描述
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入输出格式
输入格式:
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出格式:
输出包含一行一个整数,即an除以m的余数。
输入输出样例
1 1 1 1 10 7
6
说明
数列第10项是55,除以7的余数为6。
构造矩阵
p q
1 0
求它的n-2次幂,再乘
a2
a1
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
ll p,q,a1,a2,n,MOD;
struct mat{
int r,c;
ll m[][];
mat(){r=c=;memset(m,,sizeof(m));}
}im,f;
void init(){
im.m[][]=im.m[][]=;
f.m[][]=p;f.m[][]=q;f.m[][]=;
}
mat mul(mat &a,mat &b){//printf("p\n");
mat c;
for(int i=;i<=a.r;i++)
for(int k=;k<=a.c;k++) if(a.m[i][k])
for(int j=;j<=b.c;j++) c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]%MOD)%MOD;
return c;
}
int main(){
scanf("%d%d%d%d%lld%lld",&p,&q,&a1,&a2,&n,&MOD);
init();n-=;
mat ans=im;
for(;n;n>>=,f=mul(f,f))
if(n&) ans=mul(ans,f); //printf("a %d %d %d %d\n",ans.m[1][1],ans.m[1][2],ans.m[2][1],ans.m[2][2]);
mat a;
a.r=;a.c=;
a.m[][]=a2;a.m[][]=a1;
a=mul(ans,a);
printf("%d",a.m[][]%MOD);
}
PS
gcd(fn,fm)=f(gcd(n,m))
洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]的更多相关文章
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- 将GridView数据导入到excel,并提供下载
之前项目中需要一个导出数据到Excel的功能,现在将代码记录下来.其实将girdView中的数据导出的代码很简单,如下: ) { Response.Charset="GB2312" ...
- 背水一战 Windows 10 (18) - 绑定: 与 Element 绑定, 与 Indexer 绑定, TargetNullValue, FallbackValue
[源码下载] 背水一战 Windows 10 (18) - 绑定: 与 Element 绑定, 与 Indexer 绑定, TargetNullValue, FallbackValue 作者:weba ...
- [函数] Delphi FMX Windows 取得下载 Downloads 目录
在 Firemonkey 提供了一个跨平台的函数 TPath.GetDownloadsPath 来取得该平台的下载目录,但是非常奇怪的是,在 Windows 平台下,取得的下载目录确是: C:\Use ...
- 用Kotlin改写PHP程序是什么样的体验
学Kotlin其实要看:http://kotlinlang.org/docs/kotlin-docs.pdf 在线版是不完整的!!!少了一些章节,会有点难看懂后面的文档. 我选择了WordPress里 ...
- php中return的用法实例分析
本文实例讲述了php中return的用法.分享给大家供大家参考.具体分析如下: 首先,它的意思就是返回;return()是语言结构而不是函数,仅在参数包含表达式时才需要用括号将其括起来.当返回一个变量 ...
- MySQL中进行模糊搜索的一些问题
在搜索数据库中的数据时,SQL 通配符可以替代一个或多个字符.SQL 通配符必须与 LIKE 运算符一起使用.在 SQL 中,可使用以下通配符:通配符 描述 % 替代一个或多个字符 ...
- Hui之Hui.js 官方文档
基础 // 判断值是否是指定数据类型 var result = hui.isTargetType("百签软件", "string"); //=>true ...
- 轻松掌握:JavaScript代理模式、中介者模式
代理模式.中介者模式 代理模式 在面向对象设计中,有一个单一职责原则,指就一个类(对象.函数)而言,应该仅有一个引起它变化的原因.如果一个对象承担了过多的职责,就意味着它将变得巨大,引起它变化的原因就 ...
- 天津政府应急系统之GIS一张图(arcgis api for flex)讲解(三)显示地图坐标系模块
config.xml文件的配置如下: <widget left="3" bottom="3" config="widgets/Coordinat ...
- 常用ArcGIS for Silverlight 开发API介绍
1.API介绍 2.Map对象 3.Layer对象 4.Symbol对象 5.Task对象