题目描述

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.

The map of the region in which FJ lives consists of N intersections (2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection 1, and his farm is located at intersection N. It is possible to reach the farm from his house by traveling along a series of directional roads.

Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road i takes P_i units of time to traverse according to the first GPS unit, and Q_i units of time to traverse according to the second unit (each travel time is an integer in the range 1..100,000).

FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection X to intersection Y) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).

Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as +2 towards the total.

给你一个N个点的有向图,可能有重边.

有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.

每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T

两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.

如果边(u,v)不在u到n的最短路径上,这条边就受到一次警告,求从1到n最少受到多少次警告。

输入输出格式

输入格式:

  • Line 1: The integers N and M.

Line i describes road i with four integers: A_i B_i P_i Q_i.

输出格式:

  • Line 1: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

输入输出样例

输入样例#1:

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5
输出样例#1:

1

说明

There are 5 intersections and 7 directional roads. The first road connects from intersection 3 to intersection 4; the first GPS thinks this road takes 7 units of time to traverse, and the second GPS thinks it takes 1 unit of time, etc.

If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a shortest route from 2 to 5 according to each GPS.


感觉好神

先求两次最短路,然后新建图只要不在一条最短路上就边w++,再求最短路

注意GPS认为的最短路是到达n,所以前两次反向建图

PS:沙茶的数组M写成N

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e4+,M=5e4+,INF=1e9+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u[M],v[M],w1[M],w2[M];
struct edge{
int u,v,ne,w1,w2;
}e[M];
struct edge2{
int v,ne,w;
}en[M];
int h[N],cnt=;
inline void ins(int u,int v,int w1,int w2){
cnt++;
e[cnt].u=h[u];
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;e[cnt].w1=w1;e[cnt].w2=w2;
}
inline void add(int u,int v,int w){
cnt++;
en[cnt].v=v;en[cnt].w=w;en[cnt].ne=h[u];h[u]=cnt;
}
int q[N],head=,tail=,inq[N],d1[N],d2[N],d3[N];
inline void lop(int &x){if(x==N-) x=;}
void spfa1(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w1;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
void spfa2(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w2;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
} void buildGraph(){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=m;i++){
int w=;
if(d1[u[i]]<d1[v[i]]+w1[i]) w++;
if(d2[u[i]]<d2[v[i]]+w2[i]) w++;
add(u[i],v[i],w);//printf("add %d %d %d\n",u,v,w);
}
}
void spfa3(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=;inq[]=;d[]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);//printf("spfa3 %d\n",u);
for(int i=h[u];i;i=en[i].ne){
int v=en[i].v,w=en[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
u[i]=read();v[i]=read();w1[i]=read();w2[i]=read();
ins(v[i],u[i],w1[i],w2[i]);
}
spfa1(d1);
spfa2(d2);
buildGraph();
spfa3(d3);
printf("%d",d3[n]);
}

[USACO14OPEN] Dueling GPS's[最短路建模]的更多相关文章

  1. Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...

  2. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  3. USACO Dueling GPS's

    洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...

  4. BZOJ3538: [Usaco2014 Open]Dueling GPS

    3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 59  Solved: 36[Subm ...

  5. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  6. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  7. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

  8. POJ 1062 昂贵的聘礼 【带限制的最短路/建模】

    年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长降低要求.酋长说:" ...

  9. 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...

随机推荐

  1. 记一SQL部署问题

    在部署环境时,不同的环境可能会有一些不同步,而个人遇到的问题就是在开发环境中表中均有字段 BestCaseId 和 RiskId 字段,生产环境中目前只有 BestCaseId 字段,新搭建的测试环境 ...

  2. 背水一战 Windows 10 (37) - 控件(弹出类): MessageDialog, ContentDialog

    [源码下载] 背水一战 Windows 10 (37) - 控件(弹出类): MessageDialog, ContentDialog 作者:webabcd 介绍背水一战 Windows 10 之 控 ...

  3. 16、ASP.NET MVC入门到精通——MVC过滤器

    本系列目录:ASP.NET MVC4入门到精通系列目录汇总 在ASP.NET MVC中有四种过滤器类型

  4. JavaScript调试 - debugger语句

    语法: debugger 作用: 启动调试器 备注: 1. 可以将debugger语句放在过程的任何地方以中止执行.2. 使用debugger语句类似于在代码中设置断点. 3. debugger语句中 ...

  5. js无限级树菜单

    以前做网站,树形菜单一般都很简单,自己定义风格样式,简单的js控制,后来原来网上很多文章都在讨论Js树型菜单,看了几个实例,发现这个树比较简单好用. http://hovertree.com/texi ...

  6. 【blade的UI设计】理解前端MVC与分层思想

    前言 最近校招要来了,很多大三的同学一定按捺不住心中的焦躁,其中有期待也有彷徨,或许更多的是些许担忧,最近在开始疯狂的复习了吧 这里小钗有几点建议给各位: ① 不要看得太重,关心则乱,太紧张反而表现不 ...

  7. SharePoint 2013 Search REST API 使用示例

    前言:在SharePoint2013中,提供Search REST service搜索服务,你可以在自己的客户端搜索方法或者移动应用程序中使用,该服务支持REST web request.你可以使用K ...

  8. One-Time Project Recognition

    Please indicate the source if you need to repost. After implementing NetSutie for serveral companies ...

  9. NetSuite Chinese Finance Reports

    NetSuite has a strong report customization application. The standard finance reports has a different ...

  10. ThingkPHP对数据库进行改操作

    public function test_check(){ $Experiment = M("Experiment");//实例化Experiment对象.这个对象是跟数据库的表对 ...