redis系列:分布式锁

1 介绍

这篇博文讲介绍如何一步步构建一个基于Redis的分布式锁。会从最原始的版本开始,然后根据问题进行调整,最后完成一个较为合理的分布式锁。

本篇文章会将分布式锁的实现分为两部分,一个是单机环境,另一个是集群环境下的Redis锁实现。在介绍分布式锁的实现之前,先来了解下分布式锁的一些信息。

2 分布式锁

2.1 什么是分布式锁?

分布式锁是控制分布式系统或不同系统之间共同访问共享资源的一种锁实现,如果不同的系统或同一个系统的不同主机之间共享了某个资源时,往往需要互斥来防止彼此干扰来保证一致性。

2.2 分布式锁需要具备哪些条件

  1. 互斥性:在任意一个时刻,只有一个客户端持有锁。
  2. 无死锁:即便持有锁的客户端崩溃或者其他意外事件,锁仍然可以被获取。
  3. 容错:只要大部分Redis节点都活着,客户端就可以获取和释放锁

2.4 分布式锁的实现有哪些?

  1. 数据库
  2. Memcached(add命令)
  3. Redis(setnx命令)
  4. Zookeeper(临时节点)
  5. 等等

3 单机Redis的分布式锁

3.1 准备工作

3.1.1 定义常量类

public class LockConstants {
public static final String OK = "OK"; /** NX|XX, NX -- Only set the key if it does not already exist. XX -- Only set the key if it already exist. **/
public static final String NOT_EXIST = "NX";
public static final String EXIST = "XX"; /** expx EX|PX, expire time units: EX = seconds; PX = milliseconds **/
public static final String SECONDS = "EX";
public static final String MILLISECONDS = "PX"; private LockConstants() {}
}
复制代码

3.1.2 定义锁的抽象类

抽象类RedisLock实现java.util.concurrent包下的Lock接口,然后对一些方法提供默认实现,子类只需实现lock方法和unlock方法即可。代码如下

public abstract class RedisLock implements Lock {

    protected Jedis jedis;
protected String lockKey; public RedisLock(Jedis jedis,String lockKey) {
this(jedis, lockKey);
} public void sleepBySencond(int sencond){
try {
Thread.sleep(sencond*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
} @Override
public void lockInterruptibly(){} @Override
public Condition newCondition() {
return null;
} @Override
public boolean tryLock() {
return false;
} @Override
public boolean tryLock(long time, TimeUnit unit){
return false;
} }
复制代码

3.2 最基础的版本1

先来一个最基础的版本,代码如下

public class LockCase1 extends RedisLock {

    public LockCase1(Jedis jedis, String name) {
super(jedis, name);
} @Override
public void lock() {
while(true){
String result = jedis.set(lockKey, "value", NOT_EXIST);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
} @Override
public void unlock() {
jedis.del(lockKey);
}
}
复制代码

LockCase1类提供了lock和unlock方法。
其中lock方法也就是在reids客户端执行如下命令

SET lockKey value NX
复制代码

而unlock方法就是调用DEL命令将键删除。
好了,方法介绍完了。现在来想想这其中会有什么问题?
假设有两个客户端A和B,A获取到分布式的锁。A执行了一会,突然A所在的服务器断电了(或者其他什么的),也就是客户端A挂了。这时出现一个问题,这个锁一直存在,且不会被释放,其他客户端永远获取不到锁。如下示意图

可以通过设置过期时间来解决这个问题

3.3 版本2-设置锁的过期时间

public void lock() {
while(true){
String result = jedis.set(lockKey, "value", NOT_EXIST,SECONDS,30);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
}
复制代码

类似的Redis命令如下

SET lockKey value NX EX 30
复制代码

注:要保证设置过期时间和设置锁具有原子性

这时又出现一个问题,问题出现的步骤如下

  1. 客户端A获取锁成功,过期时间30秒。
  2. 客户端A在某个操作上阻塞了50秒。
  3. 30秒时间到了,锁自动释放了。
  4. 客户端B获取到了对应同一个资源的锁。
  5. 客户端A从阻塞中恢复过来,释放掉了客户端B持有的锁。

示意图如下

这时会有两个问题

  1. 过期时间如何保证大于业务执行时间?
  2. 如何保证锁不会被误删除?

先来解决如何保证锁不会被误删除这个问题。
这个问题可以通过设置value为当前客户端生成的一个随机字符串,且保证在足够长的一段时间内在所有客户端的所有获取锁的请求中都是唯一的。

版本2的完整代码:Github地址

3.4 版本3-设置锁的value

抽象类RedisLock增加lockValue字段,lockValue字段的默认值为UUID随机值假设当前线程ID。

public abstract class RedisLock implements Lock {

    //...
protected String lockValue; public RedisLock(Jedis jedis,String lockKey) {
this(jedis, lockKey, UUID.randomUUID().toString()+Thread.currentThread().getId());
} public RedisLock(Jedis jedis, String lockKey, String lockValue) {
this.jedis = jedis;
this.lockKey = lockKey;
this.lockValue = lockValue;
} //...
}
复制代码

加锁代码

public void lock() {
while(true){
String result = jedis.set(lockKey, lockValue, NOT_EXIST,SECONDS,30);
if(OK.equals(result)){
System.out.println(Thread.currentThread().getId()+"加锁成功!");
break;
}
}
}
复制代码

解锁代码

public void unlock() {
String lockValue = jedis.get(lockKey);
if (lockValue.equals(lockValue)){
jedis.del(lockKey);
}
}
复制代码

这时看看加锁代码,好像没有什么问题啊。
再来看看解锁的代码,这里的解锁操作包含三步操作:获取值、判断和删除锁。这时你有没有想到在多线程环境下的i++操作?

3.4.1 i++问题

i++操作也可分为三个步骤:读i的值,进行i+1,设置i的值。
如果两个线程同时对i进行i++操作,会出现如下情况

  1. i设置值为0
  2. 线程A读到i的值为0
  3. 线程B也读到i的值为0
  4. 线程A执行了+1操作,将结果值1写入到内存
  5. 线程B执行了+1操作,将结果值1写入到内存
  6. 此时i进行了两次i++操作,但是结果却为1

在多线程环境下有什么方式可以避免这类情况发生?
解决方式有很多种,例如用AtomicInteger、CAS、synchronized等等。
这些解决方式的目的都是要确保i++ 操作的原子性。那么回过头来看看解锁,同理我们也是要确保解锁的原子性。我们可以利用Redis的lua脚本来实现解锁操作的原子性。

版本3的完整代码:Github地址

3.5 版本4-具有原子性的释放锁

lua脚本内容如下

if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
复制代码

这段Lua脚本在执行的时候要把的lockValue作为ARGV[1]的值传进去,把lockKey作为KEYS[1]的值传进去。现在来看看解锁的java代码

public void unlock() {
// 使用lua脚本进行原子删除操作
String checkAndDelScript = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
"return redis.call('del', KEYS[1]) " +
"else " +
"return 0 " +
"end";
jedis.eval(checkAndDelScript, 1, lockKey, lockValue);
}
复制代码

好了,解锁操作也确保了原子性了,那么是不是单机Redis环境的分布式锁到此就完成了?
别忘了版本2-设置锁的过期时间还有一个,过期时间如何保证大于业务执行时间问题没有解决。

版本4的完整代码:Github地址

3.6 版本5-确保过期时间大于业务执行时间

抽象类RedisLock增加一个boolean类型的属性isOpenExpirationRenewal,用来标识是否开启定时刷新过期时间。
在增加一个scheduleExpirationRenewal方法用于开启刷新过期时间的线程。

public abstract class RedisLock implements Lock {
//... protected volatile boolean isOpenExpirationRenewal = true; /**
* 开启定时刷新
*/
protected void scheduleExpirationRenewal(){
Thread renewalThread = new Thread(new ExpirationRenewal());
renewalThread.start();
} /**
* 刷新key的过期时间
*/
private class ExpirationRenewal implements Runnable{
@Override
public void run() {
while (isOpenExpirationRenewal){
System.out.println("执行延迟失效时间中..."); String checkAndExpireScript = "if redis.call('get', KEYS[1]) == ARGV[1] then " +
"return redis.call('expire',KEYS[1],ARGV[2]) " +
"else " +
"return 0 end";
jedis.eval(checkAndExpireScript, 1, lockKey, lockValue, "30"); //休眠10秒
sleepBySencond(10);
}
}
}
}
复制代码

加锁代码在获取锁成功后将isOpenExpirationRenewal置为true,并且调用scheduleExpirationRenewal方法,开启刷新过期时间的线程。

public void lock() {
while (true) {
String result = jedis.set(lockKey, lockValue, NOT_EXIST, SECONDS, 30);
if (OK.equals(result)) {
System.out.println("线程id:"+Thread.currentThread().getId() + "加锁成功!时间:"+LocalTime.now()); //开启定时刷新过期时间
isOpenExpirationRenewal = true;
scheduleExpirationRenewal();
break;
}
System.out.println("线程id:"+Thread.currentThread().getId() + "获取锁失败,休眠10秒!时间:"+LocalTime.now());
//休眠10秒
sleepBySencond(10);
}
}
复制代码

解锁代码增加一行代码,将isOpenExpirationRenewal属性置为false,停止刷新过期时间的线程轮询。

public void unlock() {
//...
isOpenExpirationRenewal = false;
} 复制代码

版本5的完整代码:Github地址

3.7 测试

测试代码如下

public void testLockCase5() {
//定义线程池
ThreadPoolExecutor pool = new ThreadPoolExecutor(0, 10,
1, TimeUnit.SECONDS,
new SynchronousQueue<>()); //添加10个线程获取锁
for (int i = 0; i < 10; i++) {
pool.submit(() -> {
try {
Jedis jedis = new Jedis("localhost");
LockCase5 lock = new LockCase5(jedis, lockName);
lock.lock(); //模拟业务执行15秒
lock.sleepBySencond(15); lock.unlock();
} catch (Exception e){
e.printStackTrace();
}
});
} //当线程池中的线程数为0时,退出
while (pool.getPoolSize() != 0) {}
}
复制代码

测试结果

或许到这里基于单机Redis环境的分布式就介绍完了。但是使用java的同学有没有发现一个锁的重要特性

那就是锁的重入,那么分布式锁的重入该如何实现呢?这里就留一个坑了

4 集群Redis的分布式锁

在Redis的分布式环境中,Redis 的作者提供了RedLock 的算法来实现一个分布式锁。

4.1 加锁

RedLock算法加锁步骤如下

  1. 获取当前Unix时间,以毫秒为单位。
  2. 依次尝试从N个实例,使用相同的key和随机值获取锁。在步骤2,当向Redis设置锁时,客户端应该设置一个网络连接和响应超时时间,这个超时时间应该小于锁的失效时间。例如你的锁自动失效时间为10秒,则超时时间应该在5-50毫秒之间。这样可以避免服务器端Redis已经挂掉的情况下,客户端还在死死地等待响应结果。如果服务器端没有在规定时间内响应,客户端应该尽快尝试另外一个Redis实例。
  3. 客户端使用当前时间减去开始获取锁时间(步骤1记录的时间)就得到获取锁使用的时间。当且仅当从大多数(这里是3个节点)的Redis节点都取到锁,并且使用的时间小于锁失效时间时,锁才算获取成功。
  4. 如果取到了锁,key的真正有效时间等于有效时间减去获取锁所使用的时间(步骤3计算的结果)。
  5. 如果因为某些原因,获取锁失败(没有在至少N/2+1个Redis实例取到锁或者取锁时间已经超过了有效时间),客户端应该在所有的Redis实例上进行解锁(即便某些Redis实例根本就没有加锁成功)。

4.2 解锁

向所有的Redis实例发送释放锁命令即可,不用关心之前有没有从Redis实例成功获取到锁.


关于RedLock算法,还有一个小插曲,就是Martin Kleppmann 和 RedLock 作者 antirez的对RedLock算法的互怼。 官网原话如下

Martin Kleppmann analyzed Redlock here. I disagree with the analysis and posted my reply to his analysis here.

更多关于RedLock算法这里就不在说明,有兴趣的可以到官网阅读相关文章。

5 总结

这篇文章讲述了一个基于Redis的分布式锁的编写过程及解决问题的思路,但是本篇文章实现的分布式锁并不适合用于生产环境。java环境有 Redisson 可用于生产环境,但是分布式锁还是Zookeeper会比较好一些(可以看Martin Kleppmann 和 RedLock的分析)。

Martin Kleppmann对RedLock的分析:martin.kleppmann.com/2016/02/08/…

RedLock 作者 antirez的回应:antirez.com/news/101

整个项目的地址存放在Github上,有需要的可以看看:Github地址

摘自https://juejin.im/post/5b737b9b518825613d3894f4

redis系列:分布式锁的更多相关文章

  1. 【分布式缓存系列】Redis实现分布式锁的正确姿势

    一.前言 在我们日常工作中,除了Spring和Mybatis外,用到最多无外乎分布式缓存框架——Redis.但是很多工作很多年的朋友对Redis还处于一个最基础的使用和认识.所以我就像把自己对分布式缓 ...

  2. redis系列:基于redis的分布式锁

    一.介绍 这篇博文讲介绍如何一步步构建一个基于Redis的分布式锁.会从最原始的版本开始,然后根据问题进行调整,最后完成一个较为合理的分布式锁. 本篇文章会将分布式锁的实现分为两部分,一个是单机环境, ...

  3. 什么是分布式锁?Redis实现分布式锁详解

    在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务.分布式锁等.那具体什么是分布式锁,分布式锁应用在哪些业务场景.如何来实现分布式锁呢?今天继续由陈睿|mikeche ...

  4. SpringBoot电商项目实战 — Redis实现分布式锁

    最近有小伙伴发消息说,在Springboot系列文第二篇,zookeeper是不是漏掉了?关于这个问题,其实我在写第二篇的时候已经考虑过,但基于本次系列文章是实战练习,在项目里你能看到Zookeepe ...

  5. Redis(3)——分布式锁深入探究

    一.分布式锁简介 锁 是一种用来解决多个执行线程 访问共享资源 错误或数据不一致问题的工具. 如果 把一台服务器比作一个房子,那么 线程就好比里面的住户,当他们想要共同访问一个共享资源,例如厕所的时候 ...

  6. Redis之分布式锁实现

    点赞再看,养成习惯,微信搜索[三太子敖丙]关注这个互联网苟且偷生的工具人. 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点.资料以及我的 ...

  7. 分布式锁(2) ----- 基于redis的分布式锁

    分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...

  8. 聊聊如何用 Redis 实现分布式锁?

    作者:小林coding 计算机八股文网站:https://xiaolincoding.com 哈喽,我是小林. 今天跟大家聊聊两个问题: 如何用 Redis 实现分布式锁? Redis 是如何解决集群 ...

  9. 基于redis 实现分布式锁的方案

    在电商项目中,经常有秒杀这样的活动促销,在并发访问下,很容易出现上述问题.如果在库存操作上,加锁就可以避免库存卖超的问题.分布式锁使分布式系统之间同步访问共享资源的一种方式 基于redis实现分布式锁 ...

  10. 用Redis构建分布式锁-RedLock(真分布)

    在不同进程需要互斥地访问共享资源时,分布式锁是一种非常有用的技术手段. 有很多三方库和文章描述如何用Redis实现一个分布式锁管理器,但是这些库实现的方式差别很大,而且很多简单的实现其实只需采用稍微增 ...

随机推荐

  1. 《Machine Learning in Action》—— 浅谈线性回归的那些事

    <Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...

  2. 老猿学5G:融合计费场景的离线计费会话的Nchf_OfflineOnlyCharging_Update 更新操作过程

    ☞ ░ 前往老猿Python博文目录 ░ 一.Nchf_OfflineOnlyCharging_Update消息交互过程 Nchf_OfflineOnlyCharging_Update消息是是5G融合 ...

  3. 老猿Python部分代码样例

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 PyQt编程实战:通过eventFilter监视QScrollArea的widget()的Paint ...

  4. PyQt(Python+Qt)学习随笔:布局控件layoutSpacing属性

    在Qt Designer中布局控件有4个,分别是Vertical Layout(垂直布局).Horizontal Layout(水平布局).Grid Layout(网格布局).Form Layout( ...

  5. 2、pytorch——Linear模型(最基础版,理解框架,背诵记忆)(调用nn.Modules模块)

    #define y = X @ w import torch from torch import nn #第一模块,数据初始化 n = 100 X = torch.rand(n,2) true_w = ...

  6. c#如何取出指定的中间文本

    ///<summary> ///取出文本中间内容 ///<summary> ///<param name="left">左边文本</par ...

  7. 小齐读者拿到快手、百度、网易等 offer 的独门秘籍!

    小齐说: 这篇文章来自读者冰红茶,他刚结束了秋招,拿了很多家 offer. 和他聊完之后,我觉得他的备考思路也完全适用于美国的面试,只是分值要调整一下,但是具体每一块的内容,地球村通用.所以分享给大家 ...

  8. 团队展示——Part I

    1. 团队简介 队名:非专业团队

  9. (window)Docker的镜像使用

    镜像加速 镜像默认是通过 DockerHub 拉取的,国内可能有些困难,会报以下错误: net/http: TLS handshake timeout 所以,需要配置国内的加速服务地址: 官方地址:h ...

  10. vue2实现路由懒加载

    一.什么是懒加载 顾名思义,懒加载就是随用随加载,什么时候需要就什么时候加载. 二.为什么需要懒加载 在单页应用中,如果没有使用懒加载,webpack打包后的文件会很大,这时进入首页时的加载时间会很长 ...