• 最近在公司做统一日志收集处理平台,技术选型肯定要选择elasticsearch,因为可以快速检索系统日志,日志问题排查及功业务链调用可以被快速检索,公司各个应用的日志有些字段比如说content是不需要在es中作为存储的,当时考虑使用一种keyValue形式的数据库作存储,然后使用hbase的Rowkey作为es的docId,实现数据检索在es中,存储在hbase中,这样可以大大减轻es的存储压力。

  • 什么是 Observer

HBase 0.92 版本引入了协处理器(Coprocessor),可以使开发者将自己的代码嵌入到 HBase 中,其中协处理器分为两大块,一个是终端(Endpoint),另一个是本文将要介绍的观察者(Observer)。

Observer 有些类似于 MySQL 中的触发器(Trigger),它可以为 HBase 中的操作添加钩子,并在事件发生后实现自己的的业务逻辑。

  • Observer 主要分为三种:

RegionObserver:增删改查相关,例如 Get、Put、Delete、Scan 等 WALObserver:WAL 操作相关 MasterObserver:DDL-类型相关,例如创建、删除、修改数据表等

数据同步将会使用 RegionObserver 监听 Put 和 Delete 事件。

  • 如何实现自定义的的 Observer

每一个 Observer 都是一个 Jar 包。首先需要引入hbase-server包,并实现如BaseRegionObserver等 HBase 提供的相关接口,重写需要监听对应事件的方法。

实现数据同步功能可以重写postPut和putDelete方法监听 Put 和 Delete 事件。

下面就是一个最简单的例子,在这两个方法中分别得到 hbsae表名和 RowKey 分别对应着es中的indexName和docId

public class HbaseToEsObserver extends BaseRegionObserver {
private static Client client = null;
private static final Log LOG = LogFactory.getLog(HbaseToEsObserver.class);
public static final String SEARCH_INDICE_PATTERN = "idx_%s_%s";
/**
* 读取HBase Shell的指令参数
* @param env
*/
private void readConfiguration(CoprocessorEnvironment env) {
Configuration conf = env.getConfiguration();
EsConfig.clusterName = conf.get("es_cluster");
EsConfig.nodeHost = conf.get("es_host");
EsConfig.nodePort = conf.getInt("es_port", 9300);
EsConfig.indexName = conf.get("es_index");
EsConfig.typeName = conf.get("es_type");
LOG.info("observer -- started with config: " + EsConfig.getInfo());
} @Override
public void start(CoprocessorEnvironment env) throws IOException {
readConfiguration(env);
client = EsSearchManager.getInstance().getClient();
} public void postPut(ObserverContext<RegionCoprocessorEnvironment> e, Put put, WALEdit edit, Durability durability) {
try {
LOG.debug("es 索引开始 begin");
String indexId = new String(put.getRow());
Map<byte[], List<Cell>> familyMap = put.getFamilyCellMap();
Map<String, Object> json = new HashMap<String, Object>();
for (Map.Entry<byte[], List<Cell>> entry : familyMap.entrySet()) {
for (Cell cell : entry.getValue()) {
String key = Bytes.toString(CellUtil.cloneQualifier(cell));
String value = Bytes.toString(CellUtil.cloneValue(cell));
json.put(key, value);
LOG.info("key="+key+"value="+value);
}
}
//es中索引表的名称是idx_xxx_xxx
String tableName = e.getEnvironment().getRegion().getRegionInfo().getTable().getNameAsString();
String indexName = String.format(SEARCH_INDICE_PATTERN, EsConfig.indexName,tableName).toLowerCase();
ElasticSearchUtil.addUpdateBuilderToBulk(client.prepareUpdate(indexName, EsConfig.typeName, indexId).setUpsert(json));
} catch (Exception ex) {
LOG.error(ex);
}
} public void postDelete(final ObserverContext<RegionCoprocessorEnvironment> e, final Delete delete, final WALEdit edit, final Durability durability) throws IOException {
try {
String indexId = new String(delete.getRow());
ElasticSearchUtil.addDeleteBuilderToBulk(client.prepareDelete(EsConfig.indexName, EsConfig.typeName, indexId));
LOG.info("observer -- delete a doc: " + indexId);
} catch (Exception ex) {
LOG.error(ex);
}
}

当日志hbase中一条条插入到hbase中的时候就会触发协处理器动作,为了减轻es服务器操作的压力我们批量操作es中的数据,先将索引数据存储到BulkRequestBuilder,当缓冲池中的索引数据为10条或者当提交间隔达到最大提交间隔的时候批量将索引数据发送到es服务器中。下面看下ElasticSearchUtil中的代码

public class ElasticSearchUtil {
private static final Log LOG = LogFactory.getLog(ElasticSearchUtil.class);
// 缓冲池容量
private static final int MAX_BULK_COUNT = 10;
// 最大提交间隔(秒)
private static final int MAX_COMMIT_INTERVAL = 60 * 2;
private static Client client = null;
private static BulkRequestBuilder bulkRequestBuilder = null;
private static Lock commitIndexLock= new ReentrantLock(); static {
try {
client = EsSearchManager.getInstance().getClient();
bulkRequestBuilder = client.prepareBulk();
bulkRequestBuilder.setRefresh(true);
ScheduledExecutorService executor = Executors.newScheduledThreadPool(1);
executor.scheduleWithFixedDelay(
new CommitIndexTimer(),
30 * 1000,
MAX_COMMIT_INTERVAL * 1000,
TimeUnit.MILLISECONDS);
}catch(Exception e){
LOG.error(e.getMessage());
}
} /**
* 判断缓存池是否已满,批量提交
*
* @param threshold
*/
private static void bulkRequest(int threshold) {
if (bulkRequestBuilder.numberOfActions() > threshold) {
LOG.info("执行索引程序,当前池中待索引数量="+bulkRequestBuilder.numberOfActions());
BulkResponse bulkResponse = bulkRequestBuilder.execute().actionGet();
if (!bulkResponse.hasFailures()) {
LOG.info("es索引程序成功!");
bulkRequestBuilder = client.prepareBulk();
}
if (bulkResponse.hasFailures()) {
LOG.error("es索引异常:"+bulkResponse.buildFailureMessage());
}
}
} /**
* 定时任务,避免RegionServer迟迟无数据更新,导致ElasticSearch没有与HBase同步
* 定时执行
*/
static class CommitIndexTimer implements Runnable {
@Override
public void run() {
commitIndexLock.lock();
try {
bulkRequest(0);
} catch (Exception ex) {
ex.printStackTrace();
} finally {
commitIndexLock.unlock();
}
}
}
}

然后将项目打成jar包,提交到hdfs中,然后使用 HBase Shell 创建一个表,将这个 Observer 挂到该表中:

create 'businessslog','info'
disable 'businessslog' alter 'businessslog',METHOD =>'table_att','coprocessor' => 'hdfs://hadoop26:9000/observer.jar|com.github.hbase.observer.HbaseToEsObserver|1001|es_cluster=myes,es_type=loginfo,es_index=test,es_port=9300,es_host=114.55.253.15' enable 'businessslog'
describe 'businessslog'

最后使用 describe 'businessslog' 命令就可以查看协处理器是否挂载成功,使用命令挂载协处理器还是有点麻烦,为此 封装了hbase创建表的时候自动建立协处理器的代码如下,不用在使用麻烦的命令建立协处理器了,直接调用Java 方法创建,方便了许多

 public void createTableWithCoprocessor(String tableName,String oberverName,String path,Map<String,String> map, String...familyColumn) throws Exception {
TableName table = TableName.valueOf(tableName);
Admin admin = getConn().getAdmin();
boolean isExists = admin.tableExists(table);
if(isExists){
return ;
}else{
try {
HTableDescriptor htd = new HTableDescriptor(table);
for (String fc : familyColumn) {
HColumnDescriptor hcd = new HColumnDescriptor(fc);
htd.addFamily(hcd);
}
admin.createTable(htd);
admin.disableTable(table);
HTableDescriptor hTableDescriptor = new HTableDescriptor(table);
for (String fc : familyColumn) {
HColumnDescriptor hcd = new HColumnDescriptor(fc);
hTableDescriptor.addFamily(hcd);
}
hTableDescriptor.addCoprocessor(oberverName, new Path(path), Coprocessor.PRIORITY_USER, map);
admin.modifyTable(table, hTableDescriptor);
admin.enableTable(table);
admin.close();
} catch (IOException e) {
logger.error(e.getMessage());
}
}
}

总结: es:可以实现复杂快速查询,但是不适合存储海量数据(针对一些大字段,不存储) hbase:可以实现海量数据存储,但是不适合进行复杂查询 es+hbase可以实现海量数据的复杂快速查询,在这里es可以认为是hbase的二级索引

es中还需要将mapping映射配置正确,确保某些大字段建立索引 不存储,这里就在赘述,如上就可以实现当检索的时候还是在es中查询,当查询具体能容的时候再去hbase根据rowkey也就是es中的docId定位具体日志内容。

以上总结了部分代码,详细的代码请查看github地址 https://github.com/winstonelei/BigDataTools ,包括了一些大数据组件的基本操作,包含了hbase,hadoop,es,hive等

转载于:https://my.oschina.net/u/1792341/blog/915850

使用Observer实现HBase到Elasticsearch的数据同步的更多相关文章

  1. hadoop生态系统学习之路(八)hbase与hive的数据同步以及hive与impala的数据同步

    在之前的博文中提到,hive的表数据是能够同步到impala中去的. 一般impala是提供实时查询操作的,像比較耗时的入库操作我们能够使用hive.然后再将数据同步到impala中.另外,我们也能够 ...

  2. Elasticsearch的快速使用——Spring Boot使用Elastcisearch, 并且使用Logstash同步mysql和Elasticsearch的数据

    我主要是给出一些方向,很多地方没有详细说明.当时我学习的时候一直不知道怎么着手,花时间找入口点上比较多,你们可以直接顺着方向去找资源学习. 如果不是Spring Boot项目,那么根据Elastics ...

  3. 搞懂 ZooKeeper 集群的数据同步

    本文作者:HelloGitHub-老荀 Hi,这里是 HelloGitHub 推出的 HelloZooKeeper 系列,免费开源.有趣.入门级的 ZooKeeper 教程,面向有编程基础的新手. 项 ...

  4. HBase数据同步ElasticSearch该程序

    ElasticSearch的River机械 ElasticSearch本身就提供了River机械,对于同步数据. 在这里,现在能找到的官方推荐River: http://www.elasticsear ...

  5. HBase数据同步到ElasticSearch的方案

    ElasticSearch的River机制 ElasticSearch自身提供了一个River机制,用于同步数据. 这里能够找到官方眼下推荐的River: http://www.elasticsear ...

  6. Hbase 整合 Hadoop 的数据迁移

    上篇文章说了 Hbase 的基础架构,都是比较理论的知识,最近我也一直在搞 Hbase 的数据迁移, 今天就来一篇实战型的,把最近一段时间的 Hbase 整合 Hadoop 的基础知识在梳理一遍,毕竟 ...

  7. Elasticsearch 教程--数据

    在Elasticsearch中,每一个文档都有一个版本号码.每当文档产生变化时(包括删除),_version就会增大.在<版本控制>中,我们将会详细讲解如何使用_version的数字来确认 ...

  8. 使用hive访问elasticsearch的数据

    使用hive访问elasticsearch的数据 1.配置 将elasticsearch-hadoop-2.1.1.jar拷贝到hive/lib hive -hiveconf hive.aux.jar ...

  9. 使用spark访问elasticsearch的数据

    使用spark访问elasticsearch的数据,前提是spark能访问hive,hive能访问es http://blog.csdn.net/ggz631047367/article/detail ...

随机推荐

  1. i5 11300H和i5 10300H 的区别

    i5-11300H 为 4 核 8 线程,主频 3.1GHz,睿频 4.4GHz,三级缓存 8MB 选 i5-11300H还是i5 10300h 这些点很重要!看完你就知道了https://list. ...

  2. [每日一题]面试官问:谈谈你对ES6的proxy的理解?

    [每日一题]面试官问:谈谈你对ES6的proxy的理解? 关注「松宝写代码」,精选好文,每日一题 作者:saucxs | songEagle 一.前言 2020.12.23 日刚立的 flag,每日一 ...

  3. 500 份源码合集——GitHub 热点速览 v.21.02

    作者:HelloGitHub-小鱼干 GitHub 项目名,如同变量命名,一个好的项目名能让你一眼就知道它是什么.500-AI-Machine-learning-Deep-learning-Compu ...

  4. 【MyBatis】MyBatis 延迟加载策略

    MyBatis 延迟加载策略 文章源码 什么是延迟加载 延迟加载,就是在需要用到数据时才进行加载,不需要用到数据时就不加载数据,也被成为懒加载. 好处:先从单表查询,需要时再从关联表去关联查询,大大提 ...

  5. 最全的HashMap源码解析!

    HashMap源码解析 HashMap采用键值对形式的存储结构,每个key对应唯一的value,查询和修改的速度很快,能到到O(1)的平均复杂度.他是非线程安全的,且不能保证元素的存储顺序. 他的关系 ...

  6. appium识别工具介绍

  7. 【System】I/O密集型和CPU密集型工作负载之间有什么区别

    CPU密集型(CPU-bound) CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/ ...

  8. 详解MySQL执行事务的语法和流程

    摘要:MySQL 提供了多种存储引擎来支持事务. MySQL 提供了多种存储引擎来支持事务.支持事务的存储引擎有 InnoDB 和 BDB,其中,InnoDB 存储引擎事务主要通过 UNDO 日志和 ...

  9. QT串口助手(三):数据接收

    作者:zzssdd2 E-mail:zzssdd2@foxmail.com 一.前言 开发环境:Qt5.12.10 + MinGW 实现的功能 串口数据的接收 ascii字符形式显示与hex字符形式显 ...

  10. ASP Net Core – CORS 预检请求

    CORS(跨源资源共享)是一种机制,它允许同一个来源运行的Web应用程序从在另一个来源运行的服务器访问资源.同源策略是一种非常严格的措施,因为它只允许与服务器起源于同一源的应用程序访问其资源.很多时候 ...