题目

给出一个长度为2^M的排列,元素分别是0, 1, 2, ... , 2^M -1。 选择其中某个非空连续子序列,然后允许交换这个排列中某两个不同的数,然后使得这个连续子序列的所有数的按位异或(bitwise XOR)的结果恰好等于2^M-1 求:有多少个连续子序列满足上述条件。

Hint

\(m\leq20\)

简化题意 设a[i]表示0~i的\(b_i\)异或和.求有多少个l,r满足a[l-1]^a[r]maxx/a[l-1]^a[r]^b[A]^b[B]maxx 其中maxx=2^M-1;

当然A和B一个在l~r之中一个不在 都在或都不在可以转换为上述情况。

左边很好求出 直接上Trie树即可,关键是右边。先考虑暴力的想法 设C=a[l-1]^a[r] C^maxx=b[A]^b[B].

C^maxx此时为定值 对于l~r之中每一个\(b_i,i\in (l,r)\) 都必然存在且只存在一个位置K满足\(b_i\)^\(b_K\)=C^maxx;

所以我们只需要找到一个位置i 使得位置K在(l,r)的外 即可判定l 和 r是合法的。

这个东西我们发现可以\(n^3\)的暴力了 发现我们优化不了这个东西。不妨补集转换。

求出 有多少l r是不合法的 即求出除了不满足第一种情况外也不满足第二种情况。

对于第二种情况 对于每一个位置i 其位置K都在集合之内。

由于每个i都仅对应一个K 所以当区间为奇数的时候是必然满足条件的。

讨论 区间为偶数的时候 匹配后奇数对一定不存在 如 2 6 他们如果可以成功配对 且配对数字为w C^maxx=w 且C=w maxx=0 故这种情况不存在。

考虑区间为4的倍数且两两配对的情况 可以发现此时w为定值maxx 所以对于每一个i来说我们都已经知道其配对位置在哪了。

问题也就转换成如何快速求出一个序列 每个数字都出现了两次 要求复杂度O(1) 本着异或的思想我们可以取异或前缀和判断 但是这样会误判

所以有一个非常经典的做法 给每个值都随便赋值 然后 再异或可以大大减小这种碰撞概率(双模双hash 这样稳一点。

关于这道题的线段树做法 我不会怎么扫描线能把这个东西扫出来 还是使用hash吧 舒服一点。。

const int MAXN=1100000;
int n,m;
int a[MAXN],pos[MAXN];
int w[MAXN][2];
map<pair<int,int>,int>H[4];
int main()
{
freopen("1.in","r",stdin);
srand(time(0));
get(m);n=(1<<m)-1;
if(m==1){puts("2");return 0;}
for(int i=1;i<=n+1;++i)get(a[i]),pos[a[i]]=i;
for(int i=0;i<=n/2;++i)
{
w[pos[i^n]][0]=w[pos[i]][0]=rand()<<15|rand();
w[pos[i^n]][1]=w[pos[i]][1]=rand()<<15|rand();
}
ll ans=(ll)(n+1)*(n+2)/2;
H[0][mk(0,0)]=1;
for(int i=1;i<=n+1;++i)
{
w[i][0]^=w[i-1][0];
w[i][1]^=w[i-1][1];
ans-=H[i%4][mk(w[i][0],w[i][1])];
++H[i%4][mk(w[i][0],w[i][1])];
}
printf("%lld\n",ans);
return 0;
}

luogu4443 coci 2017 Dajave的更多相关文章

  1. [SinGuLaRiTy] COCI 2016~2017 #5

    [SinGuLaRiTy-1012] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 最近神犇喜欢考COCI...... 测试题目 对于所有的 ...

  2. @COCI 2016/2017 Round 3@ Meksikanac

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 在平面直角坐标系中,给定一个左下角为 (0, 0),右上角为 ( ...

  3. [SinGuLaRiTy] COCI 2011~2012 #2

    [SinGuLaRiTy-1008] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 测试题目 对于所有的题目:Time Limit:1s   ...

  4. CI Weekly #10 | 2017 DevOps 趋势预测

    2016 年的最后几个工作日,我们对 flow.ci Android & iOS 项目做了一些优化与修复: iOS 镜像 cocoapods 版本更新: fir iOS上传插件时间问题修复: ...

  5. 猖獗的假新闻:2017年1月1日起iOS的APP必须使用HTTPS

    一.假新闻如此猖獗 刚才一位老同事 打电话问:我们公司还是用的HTTP,马上就到2017年了,提交AppStore会被拒绝,怎么办? 公司里已经有很多人问过这个问题,回答一下: HTTP还是可以正常提 ...

  6. iOS的ATS配置 - 2017年前ATS规定的适配

    苹果规定 从2017年1月1日起,新提交的 app 不允许使用NSAllowsArbitraryLoads来绕过ATS(全称:App Transport Security)的限制. 以前为了能兼容ht ...

  7. 深入研究Visual studio 2017 RC新特性

    在[Xamarin+Prism开发详解三:Visual studio 2017 RC初体验]中分享了Visual studio 2017RC的大致情况,同时也发现大家对新的Visual Studio很 ...

  8. Xamarin+Prism开发详解三:Visual studio 2017 RC初体验

    Visual studio 2017 RC出来一段时间了,最近有时间就想安装试试,随带分享一下安装使用体验. 1,卸载visual studio 2015 虽然可以同时安装visual studio ...

  9. Microsoft Visual Studio 2017 for Mac Preview 下载+安装+案例Demo

    目录: 0. 前言 1. 在线安装器 2. 安装VS 3. HelloWorld 4. ASP.NET MVC 5. 软件下载 6. 结尾 0. 前言: 工作原因,上下班背着我的雷神,一个月瘦了10斤 ...

随机推荐

  1. 常用API - Arrays、Math、Object

    Arrays类 概述 此类包含用来操作数组(比如排序和搜索)的各种方法.此类还包含一个允许将数组作为列表来查看的静态工厂. 除非特别注明,否则如果指定数组引用为 null,则此类中的方法都会抛出 Nu ...

  2. UVA - 11300 Spreading the Wealth(数学题)

    UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...

  3. Java 项目创建 -- 统一结果处理、统一异常处理、统一日志处理

    一.IDEA 插件使用 1.说明 此处使用 SpringBoot 2.2.6 .JDK 1.8 .mysql 8.0.18 作为演示. 使用 IDEA 作为开发工具. 2.IDEA 插件 -- Lom ...

  4. Dynamics CRM Performance Issue when CRM Forms Opening

    事情发生在Dynamics CRM 8.2.2版本,客户新升级到这个版本几个月的时间. 突然有一天,客户反映为什么我们打开CRM Form页面的时候loading的时间这么长呢?大概会需要5-15分钟 ...

  5. JavaScript学习 Ⅶ

    十四. DOM(文档对象模型) 节点:Node--构成HTML文档最基本的单元 文档节点:整个HTML文档 元素节点:HTMl文档中的HTML标签 属性节点:元素的属性 文本节点:HTML标签中的文本 ...

  6. java 面向对象(三十):异常(三) 手动抛出异常对象

    1.使用说明在程序执行中,除了自动抛出异常对象的情况之外,我们还可以手动的throw一个异常类的对象. 2.[面试题] throw 和 throws区别:throw 表示抛出一个异常类的对象,生成异常 ...

  7. java 基本语法(二) 变量的使用(重点)

    1.变量的分类1.1 按数据类型分类 详细说明://1. 整型:byte(1字节=8bit) \ short(2字节) \ int(4字节) \ long(8字节) //① byte范围:-128 ~ ...

  8. 数据可视化之powerBI基础(十五)Power BI同步切片器,你知道怎么用吗?

    https://zhuanlan.zhihu.com/p/67932754 在PowerBI报表中,切片器绝对是最常用的控件了,利用它可以进行各种维度的动态切换,同一个页面中的所有图表可以同步响应:利 ...

  9. 数据可视化之powerBI技巧(一)PowerBI可视化技巧:KPI指标动态展示之TOPN及其他

    ​本文来自星友Beau的分享,在进行数据指标的展现时,对关键的少数单独展示,而对剩余的大多数折叠为其他项,是一个很常用的做法.Beau同学通过一个日常的办公场景,详细介绍了PowerBI实现的步骤,值 ...

  10. java大数据最全课程学习笔记(2)--Hadoop完全分布式运行模式

    目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 Hadoop完全分布式运行模式 步骤分析: 编写集群分发脚本xsync 集群配置 集群部署规划 配置集群 集群单 ...