题目

给出一个长度为2^M的排列,元素分别是0, 1, 2, ... , 2^M -1。 选择其中某个非空连续子序列,然后允许交换这个排列中某两个不同的数,然后使得这个连续子序列的所有数的按位异或(bitwise XOR)的结果恰好等于2^M-1 求:有多少个连续子序列满足上述条件。

Hint

\(m\leq20\)

简化题意 设a[i]表示0~i的\(b_i\)异或和.求有多少个l,r满足a[l-1]^a[r]maxx/a[l-1]^a[r]^b[A]^b[B]maxx 其中maxx=2^M-1;

当然A和B一个在l~r之中一个不在 都在或都不在可以转换为上述情况。

左边很好求出 直接上Trie树即可,关键是右边。先考虑暴力的想法 设C=a[l-1]^a[r] C^maxx=b[A]^b[B].

C^maxx此时为定值 对于l~r之中每一个\(b_i,i\in (l,r)\) 都必然存在且只存在一个位置K满足\(b_i\)^\(b_K\)=C^maxx;

所以我们只需要找到一个位置i 使得位置K在(l,r)的外 即可判定l 和 r是合法的。

这个东西我们发现可以\(n^3\)的暴力了 发现我们优化不了这个东西。不妨补集转换。

求出 有多少l r是不合法的 即求出除了不满足第一种情况外也不满足第二种情况。

对于第二种情况 对于每一个位置i 其位置K都在集合之内。

由于每个i都仅对应一个K 所以当区间为奇数的时候是必然满足条件的。

讨论 区间为偶数的时候 匹配后奇数对一定不存在 如 2 6 他们如果可以成功配对 且配对数字为w C^maxx=w 且C=w maxx=0 故这种情况不存在。

考虑区间为4的倍数且两两配对的情况 可以发现此时w为定值maxx 所以对于每一个i来说我们都已经知道其配对位置在哪了。

问题也就转换成如何快速求出一个序列 每个数字都出现了两次 要求复杂度O(1) 本着异或的思想我们可以取异或前缀和判断 但是这样会误判

所以有一个非常经典的做法 给每个值都随便赋值 然后 再异或可以大大减小这种碰撞概率(双模双hash 这样稳一点。

关于这道题的线段树做法 我不会怎么扫描线能把这个东西扫出来 还是使用hash吧 舒服一点。。

const int MAXN=1100000;
int n,m;
int a[MAXN],pos[MAXN];
int w[MAXN][2];
map<pair<int,int>,int>H[4];
int main()
{
freopen("1.in","r",stdin);
srand(time(0));
get(m);n=(1<<m)-1;
if(m==1){puts("2");return 0;}
for(int i=1;i<=n+1;++i)get(a[i]),pos[a[i]]=i;
for(int i=0;i<=n/2;++i)
{
w[pos[i^n]][0]=w[pos[i]][0]=rand()<<15|rand();
w[pos[i^n]][1]=w[pos[i]][1]=rand()<<15|rand();
}
ll ans=(ll)(n+1)*(n+2)/2;
H[0][mk(0,0)]=1;
for(int i=1;i<=n+1;++i)
{
w[i][0]^=w[i-1][0];
w[i][1]^=w[i-1][1];
ans-=H[i%4][mk(w[i][0],w[i][1])];
++H[i%4][mk(w[i][0],w[i][1])];
}
printf("%lld\n",ans);
return 0;
}

luogu4443 coci 2017 Dajave的更多相关文章

  1. [SinGuLaRiTy] COCI 2016~2017 #5

    [SinGuLaRiTy-1012] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 最近神犇喜欢考COCI...... 测试题目 对于所有的 ...

  2. @COCI 2016/2017 Round 3@ Meksikanac

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 在平面直角坐标系中,给定一个左下角为 (0, 0),右上角为 ( ...

  3. [SinGuLaRiTy] COCI 2011~2012 #2

    [SinGuLaRiTy-1008] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 测试题目 对于所有的题目:Time Limit:1s   ...

  4. CI Weekly #10 | 2017 DevOps 趋势预测

    2016 年的最后几个工作日,我们对 flow.ci Android & iOS 项目做了一些优化与修复: iOS 镜像 cocoapods 版本更新: fir iOS上传插件时间问题修复: ...

  5. 猖獗的假新闻:2017年1月1日起iOS的APP必须使用HTTPS

    一.假新闻如此猖獗 刚才一位老同事 打电话问:我们公司还是用的HTTP,马上就到2017年了,提交AppStore会被拒绝,怎么办? 公司里已经有很多人问过这个问题,回答一下: HTTP还是可以正常提 ...

  6. iOS的ATS配置 - 2017年前ATS规定的适配

    苹果规定 从2017年1月1日起,新提交的 app 不允许使用NSAllowsArbitraryLoads来绕过ATS(全称:App Transport Security)的限制. 以前为了能兼容ht ...

  7. 深入研究Visual studio 2017 RC新特性

    在[Xamarin+Prism开发详解三:Visual studio 2017 RC初体验]中分享了Visual studio 2017RC的大致情况,同时也发现大家对新的Visual Studio很 ...

  8. Xamarin+Prism开发详解三:Visual studio 2017 RC初体验

    Visual studio 2017 RC出来一段时间了,最近有时间就想安装试试,随带分享一下安装使用体验. 1,卸载visual studio 2015 虽然可以同时安装visual studio ...

  9. Microsoft Visual Studio 2017 for Mac Preview 下载+安装+案例Demo

    目录: 0. 前言 1. 在线安装器 2. 安装VS 3. HelloWorld 4. ASP.NET MVC 5. 软件下载 6. 结尾 0. 前言: 工作原因,上下班背着我的雷神,一个月瘦了10斤 ...

随机推荐

  1. cf1216E2 Numerical Sequence (hard version)(思维)

    cf1216E2 Numerical Sequence (hard version) 题目大意 一个无限长的数字序列,其组成为\(1 1 2 1 2 3 1.......1 2 ... n...\), ...

  2. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  3. mysql两种重要的引擎

    其中MyISAM:不支持事物,表锁 .frm : 表结构定义文件 .MYD: 表数据 .MYI:索引文件 InnoDB:支持事物,行锁 .frm : 表结构定义文件 .ibd:表空间(数据和索引)

  4. lottery+web2

    lottery 题目分析 题目给了一个彩票网站,经过页面的探索,没有发现明显漏洞,进行目录扫描,发现该站存在.git文件 猜测存在源码泄露,使用githack利用: 获得网页源码,进行源码分析 源码审 ...

  5. Maven 专题(一):Maven 安装与配置(vscode)

    0.首先了解一下maven安装目录 Bin:该目录包含Mvn运行的脚本 Boot:Maven自身的类加载器框架 Conf:包含非常重要的文件setting.xml Lib:该目录包含了所有Maven运 ...

  6. 数据可视化之powerBI技巧(二十一)简单三个步骤,轻松管理你的Power BI度量值

    最近碰到几个星友的问题,都是问我之前分享的源文件是如何把度量值分门别类放到不同的文件夹中的,就像这样, 其实在之前的文章中也曾提及过做法,这里再详细说一下制作步骤: 01 | 新建一个空表 点击菜单栏 ...

  7. oracle终止用户会话

    1.创建两个测试用户进行实验 执行命令如下: create user test1 identified by 1; create user test2 identified by 1; grant d ...

  8. 软件测试工程师入门——Linux【使用说明书】

    先来说一下linux是什么? linux 是一个开源.免费的操作系统,其稳定性.安全性.处理多并发已经得到业界的认可,目前很多中性,大型甚至是巨型项目都在使用linux. linux 内核:redha ...

  9. Ethical Hacking - GAINING ACCESS(10)

    CLIENT SIDE ATTACKS Use if server-side attacks fail. If IP is probably useless. Require user interac ...

  10. 程序员为什么要使用Markdown

    为什么要学习markdown? 一个让你难以拒绝的理由:markdown可以让你养成了记录的习惯. 我自从使用了markdown之后,就喜欢了写文档,记录工作日志,记录周会,记录季度计划,记录学习目标 ...