AGC 043 C - Giant Graph SG函数 dp 贪心
LINK:Giant Graph
神仙题目。
容易发现在图中选择某个点的贡献为\(10^{18\cdot(x+y+z)}\) 这等价于多选一个点多大一点就多乘了一个\(10^{18}\)
所以显然是贪心的选取是最优的。
直接贪复杂度较高 考虑一个点的是否选取只和其某个维度上相邻的点有关。
形式化的 设\(f_{i,j,k}\)表示当前这个点是否选择 那么有\(f_{i,j,k}=\Pi [f_{i',j'.k'}=0]\)
可以观察出来这是一个DAG.接下来的一步就比较神仙了。
这个dp转移每次只是依据一个维度 所以可以三个维度分开做。
就是说 三个维度变成三张图 分别做 合起来等价于把三张图的游戏结果合起来。
这其实本质上就是三个公平游戏 利用SG函数 合起来即可。值得一提的是 听说SG函数的上界为\(\sqrt m\) 所以不需要FWT可以直接暴力枚举。
复杂度O(m).
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
return x*f;
}
const int MAXN=100010,M=1000000000000000000ll%mod;
int c[MAXN];int n,m;
inline int add(int x,int y){return x=x+y>=mod?x+y-mod:x+y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
struct wy
{
int f[MAXN],g[MAXN],len;
int lin[MAXN],ver[MAXN],nex[MAXN];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void topsort()
{
fep(n,1,j)
{
go(j)c[f[tn]]=1;
int ww=0;
while(c[ww])++ww;
f[j]=ww;
go(j)c[f[tn]]=0;
}
int ww=M;
rep(1,n,i)
{
g[f[i]]=(g[f[i]]+ww)%mod;
ww=mul(ww,M);
//cout<<g[f[i]]<<' '<<ww<<endl;
}
}
}A[3];
int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(0,2,i)
{
get(m);
rep(1,m,j)
{
int get(x),get(y);
if(x>y)swap(x,y);
A[i].add(x,y);
}
A[i].topsort();
}
int ans=0;
rep(0,511,i)rep(0,511,j)
ans=add(ans,mul(mul(A[0].g[i],A[1].g[j]),A[2].g[i^j]));
put(ans);return 0;
}
AGC 043 C - Giant Graph SG函数 dp 贪心的更多相关文章
- Codeforces1037G A Game on Strings 【SG函数】【区间DP】
题目分析: 一开始没想到SG函数,其它想到了就开始敲,后来发现不对才发现了需要SG函数. 把每个字母单独提出来,可以发现有用的区间只有两个字母之间的区间和一个位置到另一个字母的不跨越另一个相同字母的位 ...
- ABC206 F - Interval Game 2 (区间DP,博弈论,SG函数)
题面 题意很简单 A l i c e \tt Alice Alice 和 B o b \tt Bob Bob 在博弈.摆在他们面前有 N \rm N N 个区间 [ l i , r i ) \rm[l ...
- 【转】博弈问题及SG函数(真的很经典)
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- (转)博弈问题与SG函数
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- 转载--博弈问题及SG函数(真的很经典)
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- POJ2425 A Chess Game[博弈论 SG函数]
A Chess Game Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3917 Accepted: 1596 Desc ...
- SG函数
入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则:游戏双方轮流取牌:每人每次仅限于取1张.2张或3张牌:扑克牌取光,则游戏结束:最后取牌的一方 ...
- hdu 4559 涂色游戏(对SG函数的深入理解,推导打SG表)
提议分析: 1 <= N <= 4747 很明显应该不会有规律的,打表发现真没有 按题意应该分成两种情况考虑,然后求其异或(SG函数性质) (1)找出单独的一个(一列中只有一个) (2)找 ...
随机推荐
- Windows 10 搭键开源IDS-Snort,简单过滤注入
关于Snort snort有三种工作模式:嗅探器.数据包记录器.网络入侵检测系统.嗅探器模式仅仅是从网络上读取数据包并作为连续不断的流显示在终端上.数据包记录器模式把数据包记录到硬盘上.网路入侵检测模 ...
- UiAutomator源码学习(1)-- UiDevice
UiDevice提供对设备状态信息的访问. 也可以使用此类来模拟设备上的用户操作,例如按键盘或按Home和Menu按钮.UiDevice类的完整源码 UiDevice.java 废话不多说,我们首先根 ...
- POJ2393贪心
题意:奶牛们收购了一家世界著名的酸奶工厂Yucky Yogurt. 在接下来的 N (1 <= N <= 10,000) 周,牛奶和人工的价格每周会波动,以致于第i周需要花公司 C_i ( ...
- JVM零碎知识
JVM常见XX参数 查看JVM默认值 常用基本配置参数 生产环境服务器变慢,如何诊断 生产环境CPU占用过高,如何诊断 JDK自带的JVM监控和性能分析工具 jps(虚拟机进程状况工具) jinfo( ...
- ASP.NET网页请求以及处理全过程(反编译工具查看源代码)
本文是自己查看源码后的个人总结,不保证其准确性.大家可作为参考. 浏览器和服务器之间的通信. 当敲一个域名到浏览器上面,然后回车的时候,如:http://www.baidu.com/index.asp ...
- C#字符串拼接
var name = "李哈哈"; var t = $"我是{name}";
- requests接口自动化2-url里不带参数的get请求
最常用的是get,post请求,然后是put,delete,其他方法很少用 1. get请求几种方式 1.1.url里不带参数的get请求 接口请求fiddler返回内容: import reques ...
- day7:字符串的操作/方法&字符串的格式化format&列表的操作
字符串的相关操作 1.字符串的拼接 strvar = "vegeta"+"ble" print(strvar) # vegetable 2.字符串的重复 str ...
- Ethical Hacking - Web Penetration Testing(8)
SQL INJECTION WHAT IS SQL? Most websites use a database to store data. Most data stored in it(userna ...
- 题解 洛谷 P4547 【[THUWC2017]随机二分图】
根据题意,题目中所求的即为所有\(n!\)种完美匹配的各自的出现概率之和再乘上\(2^n\)的值. 发现\(n\)很小,考虑状压\(DP\).设\(f_{S,T}\)为左部图匹配情况为\(S\),右部 ...