LINK:Giant Graph

神仙题目。

容易发现在图中选择某个点的贡献为\(10^{18\cdot(x+y+z)}\) 这等价于多选一个点多大一点就多乘了一个\(10^{18}\)

所以显然是贪心的选取是最优的。

直接贪复杂度较高 考虑一个点的是否选取只和其某个维度上相邻的点有关。

形式化的 设\(f_{i,j,k}\)表示当前这个点是否选择 那么有\(f_{i,j,k}=\Pi [f_{i',j'.k'}=0]\)

可以观察出来这是一个DAG.接下来的一步就比较神仙了。

这个dp转移每次只是依据一个维度 所以可以三个维度分开做。

就是说 三个维度变成三张图 分别做 合起来等价于把三张图的游戏结果合起来。

这其实本质上就是三个公平游戏 利用SG函数 合起来即可。值得一提的是 听说SG函数的上界为\(\sqrt m\) 所以不需要FWT可以直接暴力枚举。

复杂度O(m).

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000010ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=((ll)x*10+ch-'0')%mod;ch=getc();}
return x*f;
}
const int MAXN=100010,M=1000000000000000000ll%mod;
int c[MAXN];int n,m;
inline int add(int x,int y){return x=x+y>=mod?x+y-mod:x+y;}
inline int mul(int x,int y){return (ll)x*y%mod;}
struct wy
{
int f[MAXN],g[MAXN],len;
int lin[MAXN],ver[MAXN],nex[MAXN];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void topsort()
{
fep(n,1,j)
{
go(j)c[f[tn]]=1;
int ww=0;
while(c[ww])++ww;
f[j]=ww;
go(j)c[f[tn]]=0;
}
int ww=M;
rep(1,n,i)
{
g[f[i]]=(g[f[i]]+ww)%mod;
ww=mul(ww,M);
//cout<<g[f[i]]<<' '<<ww<<endl;
}
}
}A[3];
int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(0,2,i)
{
get(m);
rep(1,m,j)
{
int get(x),get(y);
if(x>y)swap(x,y);
A[i].add(x,y);
}
A[i].topsort();
}
int ans=0;
rep(0,511,i)rep(0,511,j)
ans=add(ans,mul(mul(A[0].g[i],A[1].g[j]),A[2].g[i^j]));
put(ans);return 0;
}

AGC 043 C - Giant Graph SG函数 dp 贪心的更多相关文章

  1. Codeforces1037G A Game on Strings 【SG函数】【区间DP】

    题目分析: 一开始没想到SG函数,其它想到了就开始敲,后来发现不对才发现了需要SG函数. 把每个字母单独提出来,可以发现有用的区间只有两个字母之间的区间和一个位置到另一个字母的不跨越另一个相同字母的位 ...

  2. ABC206 F - Interval Game 2 (区间DP,博弈论,SG函数)

    题面 题意很简单 A l i c e \tt Alice Alice 和 B o b \tt Bob Bob 在博弈.摆在他们面前有 N \rm N N 个区间 [ l i , r i ) \rm[l ...

  3. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  4. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  5. 转载--博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  6. 【转】博弈—SG函数

    转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...

  7. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  8. SG函数

    入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则:游戏双方轮流取牌:每人每次仅限于取1张.2张或3张牌:扑克牌取光,则游戏结束:最后取牌的一方 ...

  9. hdu 4559 涂色游戏(对SG函数的深入理解,推导打SG表)

    提议分析: 1 <= N <= 4747 很明显应该不会有规律的,打表发现真没有 按题意应该分成两种情况考虑,然后求其异或(SG函数性质) (1)找出单独的一个(一列中只有一个) (2)找 ...

随机推荐

  1. UVA 11383 Golden Tiger Claw 题解

    题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...

  2. 查看mysql所有命令

  3. CSS(二)- 属性速览(含版本、继承性和简介)

    相关链接 CSS3速查表,这里面列出了所有新增的属性以及新增或者修改的属性值 css参考手册,很好地一个常用网站 CSS定位(不可继承) CSS布局(仅visibility可继承) CSS尺寸(不可继 ...

  4. 卸载wsl子系统

    1>在powershell中输入下面的代码 wslconfig /l #显示出你安装的列表. wslconfig /u debian #debian为上述列表中的名字 注销子系统 2>打开 ...

  5. 批量删除当前文件夹下面的.svn文件夹

    for /r . %%a in (.) do @if exist "%%a\.svn" rd /s /q "%%a\.svn 使用方法: 新建text文档,复制上面的文本 ...

  6. Python面向对象06 /元类type、反射、函数与类的区别、特殊的双下方法

    Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 目录 Python面向对象06 /元类type.反射.函数与类的区别.特殊的双下方法 1. 元类type 2. 反射 3 ...

  7. 数据源管理 | 搜索引擎框架,ElasticSearch集群模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.集群环境搭建 1.环境概览 ES版本6.3.2,集群名称esmaster,虚拟机centos7. 服务群 角色划分 说明 en-maste ...

  8. GPO - AppLocker

    AppLocker can help you: Define rules based on file attributes that persist across app updates, such ...

  9. 不藏了,摊牌了,一张知识图谱整理完整Java并发体系,就问全不全

    推荐阅读: 2020年马士兵Java多线程高并发讲解——百万年薪架构师告诉你Java多线程与高并发 目录 这是我关于整个Java并发体系的整理,结合的主要是现在市面上对于Java并发在面试的过程中经常 ...

  10. C++语法小记---类型检测

    类型检测 C++使用typeid关键字进行类型检查 不同的编译器使用typeid返回的类型名称不严格一致,需要特别注意 也可以使用虚函数,返回各自的类型名 如果typeid的操作数不是类类型(类指针也 ...