原题

传送门

思路

分析

我们先假设队伍如下:

People left hand right hand
Before \(S_a\)
A \(a_1\) \(b_1\)
B \(a_2\) \(b_2\)
After \(S_b\)

现在我们要交换A、B,队伍如下:

People left hand right hand
Before \(S_a\)
B \(a_2\) \(b_2\)
A \(a_1\) \(b_1\)
After \(S_b\)

我们可以发现:这样交换对于BeforeAfter部分的结果没有影响,只对AB 的部分结果有影响。

对于交换前的答案:

\(ans1=\max\{\dfrac{S_a}{b_1},\dfrac{S_a\times a_1}{b_2}\}\)

对于交换后的答案:

\(ans2=\max\{\dfrac{S_a}{b_2},\dfrac{S_a\times a_2}{b_1}\}\)

我们知道,这些数都是大于等于\(1\)的正整数,于是:

\(\dfrac{S_a\times a_1}{b_2} \ge \dfrac{S_a}{b_2}\)

\(\dfrac{S_a\times a_2}{b_1} \ge \dfrac{S_a}{b_1}\)

因此,当我们假定 \(ans1 < ans2\)时,一定是:

\(\dfrac{S_a\times a_1}{b_2} < \dfrac{S_a\times a_2}{b_1}\)

化简得:

\(a_1\times a_2 < b_1 \times b_2\)

算法

显然,此关系满足传递性,即当

\(a_1\times a_2 < b_1 \times b_2\)

\(b_1\times b_2 < c_1 \times c_2\)

有:

\(a_1\times a_2 < c_1 \times c_2\)

因此,我们可以贪心,只要按此规则排序,再统计答案即可,注意要高精

代码

压位高精:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std; #define ll long long const int MAXN = 1010;
const int base = 10000; int n;
struct people{
int x,y;
bool operator < (const people &b ) const {
return (ll)x * y < (ll)b.x * b.y;
}
}peo[MAXN]; struct bignum{//only mul ,comp ans so on
int a[1020],len;
bignum() {//初始化
memset(a,0,sizeof(a));
len = 1;
}
void resize(){//限制位数
len = 1010;
for(int i = len - 1;i >= 0;i--)
if( a[i] > 0 ) {
len = i + 1;
return;
}
len = 1;
}
bool operator < (const bignum &b) const{//比大小
if ( len != b.len) return len < b.len;
for(int i = len - 1 ;i >= 0 ;i--){
if(a[i] != b.a[i]) return a[i] < b.a[i];
}
return 0;
} bignum operator * (const int &b) const{ //乘法(高精乘int)
bignum c;
for(int i = 0; i < len ;i++){
c.a[i] += a[i] * b;
if( c.a[i] >= base) {
c.a[i+1] += c.a[i]/base;
c.a[i] %= base;
}
}
c.resize();
return c;
} bignum operator / (const int &b) const{//除法(高精除int)
ll temp = 0;
bignum c;
if( b == 0) {
printf("Error!");
return c;
}
for(int i = len -1;i >= 0;i--){
temp = temp * base + a[i];
if(temp >= b) {
c.a[i] = temp / b;
temp %= b;
}
}
c.resize();
return c;
} void print (){//输出
resize();
printf("%d",a[len-1]);
if ( len > 1)
for(int i = len - 2;i >=0;i--){
printf("%04d",a[i]);
}
return;
}
};
int main (){
scanf("%d",&n);
for(int i = 0;i <= n;i++){
scanf("%d %d",&peo[i].x,&peo[i].y);
}
sort(peo+1,peo+n+1);
bignum ans,tot;
tot.a[0] = 1 ;
tot = tot * peo[0].x;
for(int i = 1;i <= n;i++){
bignum temp = tot / peo[i].y;
tot = tot * peo[i].x;
if( ans < temp ) ans = temp;
}
ans.print();
return 0;
}

反思总结

应该是太久没写压位高精了,打错了INF回,我有几个出错的地方:

  1. resize() 函数里未在最后设置len=1 ,导致数为0时len很大
  2. resize() 函数里面把 return 写成break; ,导致每个被resize()的数的len=1
  3. base可以去1e5但只取了1e4
  4. print()函数里面输出记忆错误:
printf("%4d",a[i]);

显然,少了0

5. *函数里面写成了:

bignum operator * (const int &b) const{
bignum c;
for(int i = 0; i < len ;i++){
c.a[i] = a[i] * b;
if( c.a[i] >= base) {
c.a[i+1] += c.a[i]/base;
c.a[i] %= base;
}
}
c.resize();
return c;
}

总的来说,我也要多练习压位高精……

洛谷 P1080 国王游戏 题解的更多相关文章

  1. 【题解】洛谷 P1080 国王游戏

    目录 题目 思路 \(Code\) 题目 P1080 国王游戏 思路 贪心+高精度.按\(a \times b\)从小到大排序就可以了. \(Code\) #include<bits/stdc+ ...

  2. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

  3. 洛谷P1080 国王游戏 python解法 - 高精 贪心 排序

    洛谷的题目实在是裹脚布 还编的像童话 这题要 "使得获得奖赏最多的大臣,所获奖赏尽可能的少." 看了半天都觉得不像人话 总算理解后 简单说题目的意思就是 根据既定的运算规则 如何排 ...

  4. 洛谷P1080 国王游戏【大数】【贪心】

    题目:https://www.luogu.org/problemnew/show/P1080 题意: 一个国王和n个大臣,每个人左右手上都有一个数值. 现在将国王排在队首,将大臣进行排序.每个大臣的值 ...

  5. [NOIP2012] 提高组 洛谷P1080 国王游戏

    题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 成一排,国王站在队伍 ...

  6. 洛谷 P1080 国王游戏

    题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王站在队伍的最 ...

  7. 洛谷—— P1080 国王游戏

    https://www.luogu.org/problem/show?pid=1080 题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整 ...

  8. 洛谷P1080 国王游戏

    两个难点. 怎么想到的贪心? 首先确定算法: 显然不是数据结构题.转成图论也不太可能. 考虑DP:f[i][j]表示前i个人取j状态的最小最大值......2^1000,直接放弃. 因为出现了“最大值 ...

  9. 【贪心】洛谷 P1199 三国游戏 题解

     这个题尽管题目长,主要还是证明贪心的正确性(与博弈关系不大) 题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战 ...

随机推荐

  1. 全网最全fiddler使用教程和fiddler如何抓包(fiddler手机抓包)-笔者亲测

    一.前言 抓包工具有很多,比如常用的抓包工具Httpwatch,通用的强大的抓包工具Wireshark.为什么使用fiddler?原因如下:1.Wireshark是通用的抓包工具,但是比较庞大,对于只 ...

  2. RocketMQ(1)---架构原理及环境搭建

    一.架构简述 RocketMQ阿里开源的一个分布式消息传递和流媒体平台,具有低延迟,高性能和可靠性, 万亿级容量和灵活的可伸缩性.跟其它中间件相比,RocketMQ的特点是纯JAVA实现,在发生宕机和 ...

  3. C# 9.0 新特性之只读属性和记录

    阅读本文大概需要 2 分钟. 大家好,这是 C# 9.0 新特性系列的第 4 篇文章. 熟悉函数式编程的童鞋一定对"只读"这个词不陌生.为了保证代码块自身的"纯洁&quo ...

  4. 恕我直言你可能真的不会java第6篇:Stream性能差?不要人云亦云

    一.粉丝的反馈 问:stream比for循环慢5倍,用这个是为了啥? 答:互联网是一个新闻泛滥的时代,三人成虎,以假乱真的事情时候发生.作为一个技术开发者,要自己去动手去做,不要人云亦云. 的确,这位 ...

  5. Python3-shelve模块-持久化字典

    Python3中的shelve提供了持久化字典对象 和字典基本一个样,只不过数据保存在了文件中,没什么好说的,直接上代码 注: 1.打开文件后不要忘记关闭文件 2.键只能是字符串,值可以是任何值 3. ...

  6. idea中Junit的使用

    第一步:添加插件 添加插件:File->Settings->Plugins 第二步:修改设置 1.设置生成模式:File->Settings->Other Settings 指 ...

  7. Jmeter系列(34)- 详解 Counter 计数器

    如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 简单介绍 计数器的作用:循环递增生成数 ...

  8. cv2 exposureFusion (曝光融合)

    import cv2 import numpy as np import sys filenames = ['./images/memorial0061.jpg', './images/memoria ...

  9. JS动画三剑客——setTimeout、setInterval、requestAnimationFrame

    一.前言 前端实现动画效果主要有以下几种方法:CSS3中的transition 和 animation ,Javascript 中可以通过定时器 setTimeout.setinterval,HTML ...

  10. js统计字符

    问题:    var str1 = "abcdabcabcaabeeeeeee";     var str2 = "fhjdiovjdasklgudsaklfgdaskl ...