前言

​ 一台计算机的核心是CPU,它是计算机系统的运算和控制核心。由于它处理运算速度快,所以基本都会给CPU配置一级缓存,当CPU要读取一个数据时,首先从缓存中查询,如果没有在从内存或者磁盘块中找。

​ 同样的,作为一个服务器应用程序,为了让应用程序运行更快速,响应更给力,我们会给它设置一些数据缓存,这样可以提高应用程序的吞吐量、缩短客户端的响应时间。

建立缓存过程分析

​ 我们从java最常用的方案开始——一个简单的HashMap。

public interface Computable<A, V> {
V compute(A arg) throws InterruptedException;
}
public class ExpensiveFunction implements Computable<String, BigInteger> {
@Override
public BigInteger compute(String arg) throws InterruptedException {
// after deep thought...
return new BigInteger(arg);
}
}

​ Computable<A, V>接口描述了一个功能,输入类型是A,输出结果的类型是V。ExpensiveFunction实现了Computable。需要花比较长的时间来计算结果。所以我们计划把计算过的值都放进一个HashMap中,这样下一次有同一个A值进来时,直接获取A的计算结果。

2.1 Synchronized版

public class Memoizer1<A, V> implements Computable<A, V> {
private final Map<A, V> cache = new HashMap<A, V>();
private final Computable<A, V> c;
public Memoizer1(Computable<A, V> c) {
this.c = c;
}
@Override
public synchronized V compute(A arg) throws InterruptedException {
V result = cache.get(arg);
if (result == null) {
result = c.compute(arg);
cache.put(arg, result);
}
return result;
}
}

​ Memoizer1实现了第一个版本,HashMap不是线程安全的,所以使用synchronzied关键字来保证线程安全,如果cache变量中有计算结果,直接从cache取,不需要再次计算,省下许多时间。但使用synchronzied使得一次只有一个线程能够执行compute。如果一个线程正在计算结果,那其他调用compute的线程可能被阻塞很长时间,造成性能下降,这不是我们希望通过缓存得到的性能优化结果。

2.2 ConcurrentHashMap版

public class Memoizer2<A, V> implements Computable<A, V> {
private final Map<A, V> cache = new ConcurrentHashMap<>();
private final Computable<A, V> c;
public Memoizer2(Computable<A, V> c) {
this.c = c;
} @Override
public V compute(A arg) throws InterruptedException {
V result = cache.get(arg);
if (result == null) {
result = c.compute(arg);
cache.put(arg, result);
}
return result;
}
}

​ Memoizer2用ConcurrentHashMap取代HashMap,改进了Memoizer1中那种糟糕的并发行为。因为ConcurrentHashMap是线程安全的,所以不需要使用Synchronized关键字,而是使用内部hash桶的分段锁机制。

​ Memoizer2与Memoizer1相比,毫无疑问具有了更好的并发性:多线程可以真正并发访问了。但是作为高速缓存仍然存在缺陷:当两个线程同时调用compute时,如果是计算同一个值,此时compute是需要很大的开销的,在一个线程还在计算中时,其它线程不知道,所以可能会重复计算。而我们希望的是:如果A线程正在计算arg,那B就不要重复计算arg,等A计算好,直接取arg对应的V就好了。

2.3 ConcurrentHashMap + FutureTask版

public class Memoizer3<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();
private final Computable<A, V> c;
public Memoizer3(Computable<A, V> c) {
this.c = c;
}
@Override
public V compute(A arg) throws InterruptedException {
Future<V> f = cache.get(arg);
if (f == null) {
Callable<V> eval = () -> {
return c.compute(arg);
};
FutureTask<V> ft = new FutureTask<>(eval);
f = ft;
cache.put(arg, ft);
ft.run(); // 调用 c.compute发生在这里
}
try {
return f.get();
} catch (ExecutionException e) {
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
}

​ Memoizer3为缓存的值重新定义可存储Map,用ConcurrentHashMap<A, Future>取代ConcurrentHashMap<A,V>。Memoizer3首先检查一个相应的计算是否开始,如果不是,就创建一个FutureTash,并把它注册到map中,并开始计算,如果是,那么它就会等待正在计算的结果。

​ Memoizer3的实现近乎是完美的:它展示了非常好的并发性,能很快返回已经计算过的结果,如果新到的线程请求的是其它线程正在计算的结果,它也会耐心的等待。

​ Memoizer3只有一个问题,就是仍然存在这种可能性:2个线程同时计算arg,此时由于compute中的if代码块是非原子性的复合操作,2个线程会同时进入到if代码块中,依旧会同时计算同一个arg。但ConcurrentHashMap中提供了一个原子化的putIfAbsent方法,可以消除Memoizer3的隐患。

2.4 最终版

public class Memoizer<A, V> implements Computable<A, V> {
private final Map<A, Future<V>> cache = new ConcurrentHashMap<>();
private final Computable<A, V> c;
public Memoizer(Computable<A, V> c) {
this.c = c;
} @Override
public V compute(A arg) throws InterruptedException {
Future<V> f = cache.get(arg);
if (f == null) {
Callable<V> eval = () -> {
return c.compute(arg);
};
FutureTask<V> ft = new FutureTask<>(eval);
f = ft;
cache.putIfAbsent(arg, ft);
ft.run(); // 调用 c.compute发生在这里
}
try {
return f.get();
} catch (ExecutionException e) {
e.printStackTrace();
throw new RuntimeException(e.getMessage());
}
}
}

​ Memoizer可以说是缓存的完美实现了:支持高并发,同一个参数计算也不会重复执行(多亏于ConcurrentHashMap的putIfAbsent原子化操作)。最终调用者通过调用Future.get(arg)方法获取计算结果。

建立高速缓存机制-java版的更多相关文章

  1. 2019春招面试高频题(Java版),持续更新(答案来自互联网)

    第一模块--并发与多线程 Java多线程方法: 实现Runnable接口, 继承thread类, 使用线程池 操作系统层面的进程与线程(对JAVA多线程和高并发有了解吗?) 计算机资源=存储资源+计算 ...

  2. 【java项目实践】具体解释Ajax工作原理以及实现异步验证username是否存在+源代码下载(java版)

    一年前,从不知道Ajax是什么,伴随着不断的积累,到如今常常使用,逐渐有了深入的认识. 今天,假设想开发一个更加人性化,友好,无刷新,交互性更强的网页,那您的目标一定是Ajax. 介绍 在具体讨论Aj ...

  3. AKKA文档2.1(java版)——什么是AKKA?

    可扩展的实时事务处理 我们相信编写并发.容错.可扩展的应用相当的困难.盖因大多数时候我们一直在使用错误的工具和错误的抽象等级.AKKA就是为了改变这一切的.我们利用角色模型提升了抽象等级,并且提供了一 ...

  4. JCEF3——谷歌浏览器内核Java版实现(一):使用jawt获取窗体句柄

    前言 最近一段时间研究谷歌浏览器内核.谷歌浏览器内核一直开源,并维护更新,它的开源项目中内核更新速度和Chrome浏览器版本更新进度一样!而且它不同于WebKit(值得一题的是谷歌浏览器已不使用Web ...

  5. 第八篇 :微信公众平台开发实战Java版之如何网页授权获取用户基本信息

    第一部分:微信授权获取基本信息的介绍 我们首先来看看官方的文档怎么说: 如果用户在微信客户端中访问第三方网页,公众号可以通过微信网页授权机制,来获取用户基本信息,进而实现业务逻辑. 关于网页授权回调域 ...

  6. 第七篇 :微信公众平台开发实战Java版之如何获取微信用户基本信息

    在关注者与公众号产生消息交互后,公众号可获得关注者的OpenID(加密后的微信号,每个用户对每个公众号的OpenID是唯一的.对于不同公众号,同一用户的openid不同). 公众号可通过本接口来根据O ...

  7. 第五篇 :微信公众平台开发实战Java版之如何获取公众号的access_token以及缓存access_token

    一.access_token简介 为了使第三方开发者能够为用户提供更多更有价值的个性化服务,微信公众平台 开放了许多接口,包括自定义菜单接口.客服接口.获取用户信息接口.用户分组接口.群发接口等, 开 ...

  8. Oracle Berkeley DB Java 版

    Oracle Berkeley DB Java 版是一个开源的.可嵌入的事务存储引擎,是完全用 Java 编写的.它充分利用 Java 环境来简化开发和部署.Oracle Berkeley DB Ja ...

  9. pureMVC java版搭建流程

    转自:http://blog.csdn.net/sutaizi/article/details/6588004 pureMVC 是一个轻量级的框架 它在 flex中非常流行(和cairngorm差不多 ...

随机推荐

  1. Linux系统诊断必备技能之二:日志查询常用命令详解

    一.概述 日常运维工作中,排查线上环境问题,少不了去线上查日志.而使用什么命令,能快速准确地查到我们需要查找地日志信息,也是我们需要掌握的一项技能.下面介绍一下日常工作常用到的查看日志命令:tail, ...

  2. Leetcode(886)-可能的二分法

    给定一组 N 人(编号为 1, 2, ..., N), 我们想把每个人分进任意大小的两组. 每个人都可能不喜欢其他人,那么他们不应该属于同一组. 形式上,如果 dislikes[i] = [a, b] ...

  3. oslab oranges 一个操作系统的实现 实验一

    实验目的: 搭建基本实验环境,熟悉基本开发与调试工具 对应章节:第一.二章 实验内容: 1.认真阅读章节资料 2.在实验机上安装virtualbox,并安装ubuntu 3.安装ubuntu开发环境, ...

  4. python了解未知函数的方法

    ?func 如图:

  5. codeforces 2C(非原创)

    C. Commentator problem time limit per test 1 second memory limit per test 64 megabytes input standar ...

  6. MarkDown(文本编译器)

    MarkDown(一种高效的文本编译器) 推荐使用Typora 点击此处下载 使用方法 1. 首先创建一个文本文件xxx.txt. 2. 然后修改文件后缀为xxx.md.(可以记做玛德...) 3. ...

  7. how to updating Node.js and npm

    how to updating  Node.js and npm 1 Installing Node.js and updating npm How do I update Node.js ? Not ...

  8. React & update state with props & Object.assign

    React & update state with props & Object.assign Object.assign({}, oldObj, newObj) https://re ...

  9. Object.stringify 循环引用 bug & TypeError: Converting circular structure to JSON

    Object.stringify 循环引用 bug & TypeError: Converting circular structure to JSON var obj = { a: &quo ...

  10. 让 gRPC 提供 REST 服务

    让 gRPC 提供 REST 服务 Intro gRPC 是一个高性能.开源和通用的 RPC 框架,面向移动和 HTTP/2 设计. gRPC 基于 HTTP/2 标准设计,带来诸如双向流.流控.头部 ...