对于SG函数来说,sg[y]=x的意义为,x与y的输赢状态是相同的

sg[y]=mex(y)的定义与n.p点的定义是相同的

#include<iostream>
#include<cstring>
using namespace std;
int SG[1001],f[20]={1,2};
int flag[20];
void getfibo()
{
    int i;
    for(i=2;i<=15;i++) f[i]=f[i-1]+f[i-2];
}
void getSG(int x)
{
    int i,j;
    memset(SG,0,sizeof(SG));
    for(i=0;i<x;i++)//对i点的SG值进行搜索
    {
        memset(flag,0,sizeof(flag));
        for(j=0;f[j]<=i;j++)//对i点所有后继点的SG值进行标记
        {
            flag[SG[i-f[j]]]=1;
        }//
        for(j=0;;j++)//搜索没有被标记的最小值
        {
            if(flag[j]==0)
            {
                SG[i]=j;
                break;
            }
        }
    }
}
int main()
{
    int m,n,p;
    int t1,t2,t3;
    int ans;
    int i;
    getfibo();
    getSG(1000);
    for(i=0;i<30;i++) cout<<SG[i]<<" ";
    while(cin>>m>>n>>p)
    {
        if(m==0&&n==0&&p==0) break;
        ans=SG[m]^SG[n]^SG[p];
        if(ans==0) cout<<"Nacci"<<endl;
         else cout<<"Fibo"<<endl;
    }
    return 0;
}

HDOJ 1848(SG函数)的更多相关文章

  1. hdu 1848(SG函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. HDU 1848 SG函数博弈

    Fibonacci again and again Problem Description   任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1 ...

  3. hdu 1848 简单SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...

  4. HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

    Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  5. HDU 1848 Fibonacci again and again(SG函数)

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  6. SG函数入门&&HDU 1848

    SG函数 sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3. ...

  7. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  8. hdu 1848 Fibonacci again and again (初写SG函数,详解)

    思路: SG函数的应用,可取的值为不连续的固定值,可用GetSG求出SG,然后三堆数异或. SG函数相关注释见代码: 相关详细说明请结合前一篇博客: #include<stdio.h> # ...

  9. hdoj 1729 Stone Games(SG函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1729 看了题目感觉像Nim,但是有范围限制,有点不知道SG函数该怎么写 看了题解,最后才明白该怎么去理 ...

随机推荐

  1. Python在项目外更改项目内引用

    前言 目前有一个奇葩的需求, 将某个开源项目整合进自己的项目里去调度, 还需要在每次启动这个开源项目时, 加载不同的配置文件进去, 问题是配置文件并不是一个 conf 或者是其他的什么, 而是以 .p ...

  2. 最新最简洁Spring Cloud Oauth2.0 Jwt 的Security方式

    因为Spring Cloud 2020.0.0和Spring Boot2.4.1版本升级比较大,所以把我接入过程中的一些需要注意的地方告诉大家 我使用的版本是Spring boot 2.4.1+Spr ...

  3. 剑指offer 面试题4:二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  4. Sentry(v20.12.1) K8S 云原生架构探索,SENTRY FOR JAVASCRIPT Source Maps 详解

    系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...

  5. CAN总线采样点测试

    采样点是什么? 采样点是接受节点判断信号逻辑的位置,CAN通讯属于异步通讯.需要通过不断的重新同步才能保证收发节点的采样准确. 若采样点太靠前,则因为线缆原因,DUT外发报文尚未稳定,容易发生采样错误 ...

  6. ubuntu 安装 docker 并配置镜像加速(使用 apt-get 进行安装)

    ubuntu 安装docker CentOS docker安装 https://blog.csdn.net/weixin_44953227/article/details/108597310 你需要这 ...

  7. 国内最具影响力科技创投媒体36Kr的容器化之路

    本文由1月19日晚36Kr运维开发工程师田翰明在Rancher技术交流群的技术分享整理而成.微信搜索rancher2,添加Rancher小助手为好友,加入技术群,实时参加下一次分享~ 田翰明,36Kr ...

  8. CMU数据库(15-445)Lab0-环境搭建

    0.写在前面 从这篇文章开始.开一个新坑,记录以下自己做cmu数据库实验的过程,同时会分析一下除了要求我们实现的代码之外的实验自带的一些代码.争取能够对实现一个数据库比较了解.也希望能写进简历.让自己 ...

  9. Java高并发与多线程(四)-----锁

    今天,我们开始Java高并发与多线程的第四篇,锁. 之前的三篇,基本上都是在讲一些概念性和基础性的东西,东西有点零碎,但是像文科科目一样,记住就好了. 但是本篇是高并发里面真正的基石,需要大量的理解和 ...

  10. Linux安装MYSQL并部署主从复制集群

    主节点部署 安装数据库 Ubuntu apt-get install mysql-server -y systemctl start mysql systemctl enabled mysql Cen ...