题意:简化一下 就是解N个 系数矩阵一样 等式右边列矩阵不一样的方程组

题解:系数矩阵一样 为什么我却毫无办法????

   其实只要把等式右边的矩阵都排在后面就好了啊

   就变成解一个N x 2N的方程组了 ...

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-9; int n;
double a[205][405]; void gauss()
{
int now = 1, to;
for(int i = 1; i <= n; i++)
{
to = now;
for(int j = now; j <= n; j++) {
if(fabs(a[j][i]) > fabs(a[to][i])) to = j;
}
//if(to > n) continue;
if(fabs(a[to][i]) < eps) continue;
if(to != now)
for(int j = 1; j <= n + n; j++) swap(a[to][j], a[now][j]); double tmp = a[now][i];
//for(int j = 1; j <= n + n; j++) a[now][j] /= tmp;
for(int j = 1; j <= n + n; j++)
if(j != now)
{
tmp = a[j][i];
for(int k = 1; k <= n + n; k++) a[j][k] -= tmp * a[now][k];
}
now++;
}
}
int main() {
//freopen("bujor.in","r",stdin);
//freopen("bujor.out","w",stdout); int T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) scanf("%lf", &a[i][j]); for(int j = n + 1; j <= n * 2; j++)
for(int i = 1; i <= n; i++) {
if(i + n == j) a[i][j] = 1;
else a[i][j] = 0;
}
gauss(); for(int i = 1; i <= n; i++) {
for(int j = n + 1; j <= 2 * n; j++) {
double tmp = a[i][j] / a[i][i];
if(fabs(tmp) < eps) tmp = 0;
if(j != 2 * n) printf("%.9lf ", tmp);
else printf("%.9lf\n", tmp);
}
}
}
return 0;
}

gym100923C. Por Costel and Bujor (高斯消元)的更多相关文章

  1. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  2. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  3. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  4. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  5. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  6. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  7. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  8. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  9. [高斯消元] POJ 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 614   Accepted: 286 Des ...

随机推荐

  1. 任意文件下载漏洞的接口URL构造分析与讨论

    文件下载接口的URL构造分析与讨论 某学院的文件下载接口 http://www.****.edu.cn/item/filedown.asp?id=76749&Ext=rar&fname ...

  2. LeetCode707 设计链表

    设计链表的实现.您可以选择使用单链表或双链表.单链表中的节点应该具有两个属性:val 和 next.val 是当前节点的值,next 是指向下一个节点的指针/引用.如果要使用双向链表,则还需要一个属性 ...

  3. 容器编排系统K8s之APIService资源

    前文我们聊到了k8s上crd资源的使用和相关说明,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/14267400.html:今天我们来了解下k8s的第二种扩展 ...

  4. 牛客剑指Offer-数字在升序数组中出现的次数

    题目 统计一个数字在升序数组中出现的次数. 示例1 输入 [1,2,3,3,3,3,4,5],3 返回值 4 题解 第一种最简单的方法是O(n)复杂度.遍历数组统计结果. public int Get ...

  5. Spark学习进度11-Spark Streaming&Structured Streaming

    Spark Streaming Spark Streaming 介绍 批量计算 流计算 Spark Streaming 入门 Netcat 的使用 项目实例 目标:使用 Spark Streaming ...

  6. MongoDB Sharding(一) -- 分片的概念

    (一)分片的由来随着系统的业务量越来越大,业务系统往往会出现这样一些特点: 高吞吐量 高并发 超大规模的数据量 高并发的业务可能会耗尽服务器的CPU,高吞吐量.超大规模的数据量也会带来内存.磁盘的压力 ...

  7. Spring Cloud微服务Sentinel+Apollo限流、熔断实战总结

    在Spring Cloud微服务体系中,由于限流熔断组件Hystrix开源版本不在维护,因此国内不少有类似需求的公司已经将眼光转向阿里开源的Sentinel框架.而以下要介绍的正是作者最近两个月的真实 ...

  8. kubernets之服务发现

    一  服务与pod的发现 1.1  服务发现pod是很显而易见的事情,通过简称pod的标签是否和服务的标签一致即可,但是pod是如何发现服务的呢?这个问题其实感觉比较多余,但是接下来你就可能不这么想了 ...

  9. 优先队列priority_queue排序

    优先队列默认大顶堆,即堆顶元素是最大值 改成小顶堆时: priority_queue<int,vector<int>, greater<int> > Q;//注意最 ...

  10. 国内最具影响力科技创投媒体36Kr的容器化之路

    本文由1月19日晚36Kr运维开发工程师田翰明在Rancher技术交流群的技术分享整理而成.微信搜索rancher2,添加Rancher小助手为好友,加入技术群,实时参加下一次分享~ 田翰明,36Kr ...