题解-CF1389F Bicolored Segments
题面
给 \(n\) 条线段 \([l_i,r_i]\),每条有个颜色 \(t_i\in\{0,1\}\),求最多选出多少条线段,使没有不同颜色的线段相交。
数据范围:\(1\le n\le 2\cdot 10^5\),\(1\le l_i\le r_i\le 10^9\)。
蒟蒻语
昨天蒟蒻打 CF,发挥得不错,迷惑回橙。但是蒟蒻没做出这题,赛后想了好久感觉这题很奇妙,于是蒻蒻地来写篇题解。
蒟蒻解一
线段树维护 dp。
先将每条线段 \(l_i,r_i\) 离散化,坐标范围为 \([0,cnt]\)。
设 \(f(i,j,k)\) 表示看了 \([0,i]\),\([j+1,i]\) 的线段颜色都为 \(k\) 的最多线段数。
\]
\]
那么答案是 \(\max_{j=0}^{cnt}f(cnt,j,0/1)\)。
设 \(ca_i\) 这个 vector 存放 \(r_x=i\) 的 \(x\)。
所以可以用一个线段树代替 \(j\) 维,把 \(i\) 维滚掉,实现上述dp。
时间复杂度 \(\Theta(n\log n)\)。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=2e5,M=(N<<1)+1;
int n,l[N],r[N],t[N],cnt,b[M],ans;
vector<int> ca[M];
//Segmenttree
const int T=M<<2;
#define lk k<<1
#define rk k<<1|1
struct Segmenttree{ //线段树,下标为坐标,维护区间加、全局最大值
int mx[T],mk[T];
void pushup(int k){mx[k]=max(mx[lk],mx[rk]);}
void pm(int k,int v){mk[k]+=v,mx[k]+=v;}
void pushdown(int k){if(mk[k]) pm(lk,mk[k]),pm(rk,mk[k]),mk[k]=0;}
void fix(int x,int y,int v,int k,int l,int r){
if(x<=l&&r<=y) return pm(k,v);
pushdown(k);
int mid=(l+r)>>1;
if(mid>=x) fix(x,y,v,lk,l,mid);
if(mid<y) fix(x,y,v,rk,mid+1,r);
pushup(k);
}
int Mx(){return mx[1];}
void Print(int k,int l,int r){
if(l==r){cout<<mx[k]<<' ';return;}
pushdown(k);
int mid=(l+r)>>1;
Print(lk,l,mid),Print(rk,mid+1,r);
}
}g[2];
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n;
for(int i=0;i<n;i++){
cin>>l[i]>>r[i]>>t[i],--t[i];
b[cnt++]=l[i],b[cnt++]=r[i];
}
b[cnt++]=0,sort(b,b+cnt),cnt=unique(b,b+cnt)-b;
for(int i=0;i<n;i++){
l[i]=lower_bound(b,b+cnt,l[i])-b;
r[i]=lower_bound(b,b+cnt,r[i])-b;
ca[r[i]].pb(i);
}
for(int i=1;i<cnt;i++){
for(int x:ca[i]) g[t[x]].fix(0,l[x]-1,1,1,0,cnt);
g[0].fix(i,i,g[1].Mx(),1,0,cnt),g[1].fix(i,i,g[0].Mx(),1,0,cnt);//这么写也是可以的
}
cout<<max(g[0].Mx(),g[1].Mx())<<'\n';
return 0;
}
蒟蒻解二
萌新初学 OI 的时候,有一个贪心问题:求最多线段互不相交。做法是右端点再左端点双关键字排序,然后贪心取舍一下。
这题可以同样地骚操作:
初始化答案为 \(n\)。用两个 multiset 记录两种颜色分别选了哪些线段。
顺序枚举排序了的线段,如果没有选了的线段与当前线段异色并重合,那么蒟蒻们可以很开心地选上这条线段。
否则把右端点在当前线段左端点右边并且最近的异色线段从 multiset 中删除,不往 multiset 中加入当前线段,把答案 \(-1\),表示一个对抗抵消的过程。
比如加了一条 \(0\) 线段,然后再加一条 \(1\) 线段与它抵消。这时如果来 \(2\) 条 \(1\) 线段,相当于选了 \(3\) 条 \(1\) 线段;如果来 \(2\) 条 \(0\) 线段,相当于选了 \(3\) 条 \(0\) 线段。
这种思想类似求序列众数时的对抗抵消选举和模拟网络流反悔推流。
时间复杂度 \(\Theta(n\log n)\)。
代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define be(a) a.begin()
#define en(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=2e5;
int n,ans;
struct S{int l,r,t;}a[N];
multiset<int> g[2];
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n,ans=n;
for(int i=0;i<n;i++)
cin>>a[i].l>>a[i].r>>a[i].t,--a[i].t;
sort(a,a+n,[&](const S p,const S q){return p.r==q.r?p.l<q.l:p.r<q.r;});
for(int i=0;i<n;i++)
if(g[!a[i].t].lower_bound(a[i].l)==en(g[!a[i].t])) g[a[i].t].insert(a[i].r);
else ans--,g[!a[i].t].erase(g[!a[i].t].lower_bound(a[i].l));
cout<<ans<<'\n';
return 0;
}
祝大家学习愉快!
题解-CF1389F Bicolored Segments的更多相关文章
- Codeforces Educational Round 92 赛后解题报告(A-G)
Codeforces Educational Round 92 赛后解题报告 惨 huayucaiji 惨 A. LCM Problem 赛前:A题嘛,总归简单的咯 赛后:A题这种**题居然想了20m ...
- CodeForces 430A Points and Segments (easy)(构造)题解
题意:之前愣是没看懂题意...就是给你n个点的坐标xi,然后还规定了Li,Ri,要求给每个点染色,每一组L,R内的点红色和黑色的个数不能相差大于1个,问你能不能染成功,不能输出-1,能就按照输入的顺序 ...
- LeetCode题解之Number of Segments in a String
1.题目描述 2.题目分析 找到字符串中的空格即可 3.代码 int countSegments(string s) { ){ ; } vector<string> v; ; i < ...
- PAT甲题题解-1104. Sum of Number Segments (20)-(水题)
#include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...
- POJ3304:Segments——题解
http://poj.org/problem?id=3304 题目大意:给n条线段,求是否存在一条直线,将所有线段投影到上面,使得所有投影至少交于一点. ——————————————————————— ...
- [CF1167D]Bicolored RBS题解
模拟两个颜色的扩号层数,贪心,如果是左括号,哪边的层数浅就放那边:如果是右括号,哪边的层数深就放那边. 至于层数的维护,两个int就做掉了 放个代码: #include <cstdio> ...
- [CF846C]Four Segments题解
我们暴力枚举一下\(delim_{1}\) 然后对于每个\(delim_{1}\),O(n)扫一遍+前缀和求出最大\(delim_{0}\)和\(delim_{2}\),然后记录一下它们的位置就行啦 ...
- 【题解】CF1426D Non-zero Segments
题目戳我 \(\text{Solution:}\) 若\([l,r]\)子段和是\(0,\)则\(sum[r]=sum[l-1].\) 于是我们可以考虑维护当前哪一个前缀和出现过.对于区间\([l,r ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并
D. Vika and Segments Vika has an infinite sheet of squared paper. Initially all squares are whit ...
随机推荐
- centos6 安装 terminator
yum install terminator 报错: No package terminator available. 解决: yum install epel-release 报错 Cannot r ...
- JLC PCB 嘉立创自动确认生产稿,不讲武德?耗子尾汁!!!
首先,开局一张图,嘉立创又不做人的一天.嘉立创不讲武德,耗子尾汁!!! 之前下单,勾选了确定生产稿和不加客编,结果生产稿出来还是给我加了客编.那我出10元的意思何在?让我自己花3元看我花的10元有没有 ...
- [LeetCode题解]142. 环形链表 II | 快慢指针
解题思路 本题是在141. 环形链表基础上的拓展,如果存在环,要找出环的入口. 如何判断是否存在环,我们知道通过快慢指针,如果相遇就表示有环.那么如何找到入口呢? 如下图所示的链表: 当 fast 与 ...
- 纯干货分享!2020阿里java岗笔试面试题总结(附答案)
前言 2020金九银十马上结束,现为大家整理了这次金九银十面试阿里的面试题总结,都是我从朋友那拿到的面试真题,话不多说,满满的干货分享给大家! int a=10是原子操作吗? 是的. 注意点: i+ ...
- 如何使用iMazing编辑iOS设备的备份
乍一看,编辑iPhone或iPad的备份似乎是一个奇怪的命题,但实际上这样做的原因有很多,例如在备份数据损坏时进行修复,又如合并来自不同设备的数据. iMazing对备份文件编辑的支持非常全面,即使备 ...
- CodeChef-LECOINS Little Elephant and Colored Coins 题解
CodeChef-LECOINS Little Elephant and Colored Coins Little Elephant and Colored Coins The Little Elep ...
- C语言讲义——预处理
C预处理器是一个文本替换工具,在实际编译之前完成一些预先的处理. C预处理器(C Preprocessor)简写为 CPP 预处理器命令都是以#开头,如: #include <stdio.h&g ...
- 编曲技巧:使用FL Studio来制作停顿的效果
停顿效果是一种在音乐创作中非常常用的音效,它能起到缓冲的作用,而且能使这段旋律更具节奏感,在比较激情的歌曲中尤为常见.例如知名歌手王力宏演唱的<火力全开>中就使用了停顿效果,为歌曲加了不少 ...
- (在模仿中精进数据可视化05)疫情期间市值增长top25公司
本文完整代码及数据已上传至我的Github仓库https://github.com/CNFeffery/FefferyViz 1 简介 新冠疫情对很多实体经济带来冲击的同时,也给很多公司带来了新的增长 ...
- C++语言中std::array的神奇用法总结,你需要知道!
摘要:在这篇文章里,将从各个角度介绍下std::array的用法,希望能带来一些启发. td::array是在C++11标准中增加的STL容器,它的设计目的是提供与原生数组类似的功能与性能.也正因此, ...