Hadoop官方网站:http://hadoop.apache.org/

一、Hadoop的优势

  1. 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
  2. 高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
  3. 高效性:受MapReduce的思想影响,Hadoop是并行工作的,以加快任务处理速度。
  4. 高容错性:能够自动将失败的任务重新分配。

二、Hadoop的组成

2.1 HDFS架构

  1. NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
  2. DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  3. Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

2.2 Yarn架构

2.3 MapReduce架构

MapReduce将计算过程分为两个阶段,Map和Reduce。

  1. Map阶段并处处理输入数据。
  2. Reduce阶段对Map结果进行汇总。

三、大数据生态体系

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如

:MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。

(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。 (3)支持通过Kafka服务器和消费机集群来分区消息。

(4)支持Hadoop并行数据加载。

4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。

5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。

7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。

其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

9)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

10)Mahout:Apache Mahout是个可扩展的机器学习和数据挖掘库。

11)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、

分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

3.1 系统项目架构图

四、Hadoop的重要目录结构

  1. bin目录:存放对Hadoop相关服务(HDFS,YARN)进行操作的脚本
  2. etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件
  3. lib目录:存放Hadoop的本地库(对数据进行压缩解压缩功能)
  4. sbin目录:存放启动或停止Hadoop相关服务的脚本
  5. share目录:存放Hadoop的依赖jar包、文档、和官方案例

五、集群启动/停止方式

5.1 各个服务组件逐一启动/停止

(1)分别启动/停止HDFS组件

		hadoop-daemon.sh  start / stop  namenode / datanode / secondarynamenode

(2)启动/停止Yarn

		yarn-daemon.sh  start / stop  resourcemanager / nodemanager

5.2各个模块分开启动/停止(需提前配置SSH无密登录)*

(1)整体启动/停止HDFS

		start-dfs.sh   /  stop-dfs.sh

(2)整体启动/停止Yarn

		start-yarn.sh  /  stop-yarn.sh

六、Hadoop相关概念理解

6.1 Hadoop-HDFS

存储模型:字节

  • 文件线性切割成块(Block):偏移量offset(byte)
  • Block分散存储在集群节点中
  • 单一文件Block大小一致,文件与文件可以不一致
  • Block可以设置副本数,副本分散在不同节点中(副本数不要超过节点数量)
  • 文件上传可以设置Block大小和副本数
  • 已上传的文件Block副本数可以调整,大小不变
  • 只支持一次写入多次读取,同一时刻只有一个写入者
  • 可以append追加数据

6.2 Hadoop架构模型

  • 文件元数据MetaData,文件数据(元数据,数据本身)
  • (主)NameNode节点保存文件元数据:单节点 posix
  • (从)DataNode节点保存文件Block数据:多节点
  • DataNode与NameNode保持心跳,提交Block列表
  • HdfsClient与NameNode交互元数据信息
  • HdfsClient与DataNode交互文件Block数据

6.3 NameNode(NN)

  • 基于内存存储:不会和磁盘发生交换(只存在内存中,持久化)
  • NameNode主要功能:(接受客户端的读写服务,收集DataNode汇报的Block列表信息)
  • NameNode保存metadata信息包括(文件owership和permissions,文件大小,时间,Block列表:Block偏移量,位置信息,Block每副本位置(由DataNode上报))

NameNode持久化

  • NameNode的metadata信息在启动后悔加载到内存
  • metadata存储到磁盘文件名为"fsimage"
  • Block的位置信息不回保存到fsimage
  • edits记录对metadata的操作日志…最后存放在redis之中

6.4 Hadoop DataNode(DN)

  • 本地磁盘目录存储数据(Block),文件形式
  • 同时存储Block的元数据信息文件
  • 启动DN时会向NN汇报Block信息
  • 通过向NN发送心跳保持与其联系(3秒一次),如果NN10分钟没有收到DN的心跳,则认为其已经lost,并copy其上的block到其他DN。

6.5 Hadoop SecondaryNameNode(SNN)

  • 它不是NN的备份(但可以做备份),它的主要工作是帮助NN合并edits log,减少NN启动时间
  • SNN执行合并时机

根据配置文件设置的时间间隔fs.checkpoint.period 默认3600秒

根据配置文件设置edits log大小fs.checkpoint.size规定edits文件的最大值默认是64MB

SNN合并流程:

6.6 Hadoop Block的副本防止策略

  • 第一个副本:放置在上传文件的DN;如果是集群外提交,则随机挑选一台磁盘不太满,CPU不太忙的节点。
  • 第二个副本:放置在与第一个副本不同的机架的节点上。
  • 第三个副本:与第二个副本相同机架的节点。
  • 更多副本:随机节点。

6.7 Hadoop:HDFS写流程、读流程

6.8 Hadopp-安全模式

  • namenode启动的时候,首先将映像文件(fsimage)载入内存,并执行编辑日志(edits)中的各项操作
  • 一旦在内存中成功建立文件系统元数据的映射,则创建一个新的fsimage文件(这个操作不需要SecondaryNameNode)和一个空的编辑日志
  • 此刻namenode运行在安全模式,即namenode的文件系统对于客服端来说是只读的。(显示目录,显示文件内容等。写、删除、重命名都会失败)
  • 在此阶段NameNode收集各个datanode的报告,当数据达到最小副本数以上时,会被认为是“安全的”,在一定比例(可设置)的数据块被确定为“安全”后,再过若干时间,安全模式结束。
  • 当检测到副本数不足的数据块时,该块会被复制知道达到最小副本数,系统中数据块的位置并不是由namenode维护的,而是以块表形式存储在datanode中。

6.9 Hadoop-HDFS

  • 角色==进程

– namenode

–数据元存储

–内存存储,不会有磁盘交换

–持久化(fsimage,edits log)(不会持久化block的位置信息)

–block:偏移量,因为block不可以调整大小,hdfs不支持修改文件(偏移量不会改变)

–datanode

–block块

–磁盘

–面向文件,大小一样,不能调整

–副本数,调整(备份,高可用,容错/可以调整很多个,为了计算向数据移动)

–移动

–NN&DN

–心跳机制

–DN向NN汇报block信息

–client

Hadoop优势,组成的相关架构,大数据生态体系下的模式的更多相关文章

  1. Hadoop生态圈-大数据生态体系快速入门篇

    Hadoop生态圈-大数据生态体系快速入门篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.大数据概念 1>.什么是大数据 大数据(big data):是指无法在一定时间 ...

  2. Hadoop系列002-从Hadoop框架讨论大数据生态

    本人微信公众号,欢迎扫码关注! 从Hadoop框架讨论大数据生态 1.Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构 2)主要解决,海量数据的存储和海量数据的 ...

  3. 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析

    在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...

  4. hadoop(一)之初识大数据与Hadoop

    前言 从今天起,我将一步一步的分享大数据相关的知识,其实很多程序员感觉大数据很难学,其实并不是你想象的这样,只要自己想学,还有什么难得呢? 学习Hadoop有一个8020原则,80%都是在不断的配置配 ...

  5. Hadoop专业解决方案-第1章 大数据和Hadoop生态圈

    一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...

  6. Hadoop学习总结(1)——大数据以及Hadoop相关概念介绍

    一.大数据的基本概念 1.1.什么是大数据 大数据指的就是要处理的数据是TB级别以上的数据.大数据是以TB级别起步的.在计算机当中,存放到硬盘上面的文件都会占用一定的存储空间,例如: 文件占用的存储空 ...

  7. 追本溯源 解析“大数据生态环境”发展现状(CSDN)

    程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初 ...

  8. 开源大数据生态下的 Flink 应用实践

    过去十年,面向整个数字时代的关键技术接踵而至,从被人们接受,到开始步入应用.大数据与计算作为时代的关键词已被广泛认知,算力的重要性日渐凸显并发展成为企业新的增长点.Apache Flink(以下简称 ...

  9. 一文带你读懂zookeeper在大数据生态的应用

    一个执着于技术的公众号 一.简述 在一群动物掌管的世界中,动物没有人类聪明的思想,为了保持动物世界的生态平衡,这时,动物管理员-zookeeper诞生了. 打开Apache zookeeper的官网, ...

随机推荐

  1. Oracle 模糊查询 优化

    模糊查询是数据库查询中经常用到的,一般常用的格式如下: (1)字段  like '%关键字%'   字段包含"关键字"的记录   即使在目标字段建立索引也不会走索引,速度最慢 (2 ...

  2. Label_table

    <table border(边框) = "" width = height = align = bordercolor(边框色) = cellspacing 表格边框与单元格 ...

  3. 初识sa-token,一行代码搞定登录授权!

    前言 在java的世界里,有很多优秀的权限认证框架,如Apache Shiro.Spring Security 等等.这些框架背景强大,历史悠久,其生态也比较齐全. 但同时这些框架也并非十分完美,在前 ...

  4. python virtualenv 基本使用

    下载 pip install virtualenv 校验是否成功 virtualenv --version 使用 创建env环境 要写一个新项目,使用env先创建环境 cd xx\xx\xx\ # 进 ...

  5. Nginx 安装与配置教程

    标签: Nginx Linux Windows 配置 描述: Ubuntu 下以及 Windows 下 Nginx 的配置:配置详解:有关 Nginx 如何配置 Nginx 在 Ubuntu 下的安装 ...

  6. 【Linux】1、命令行及命令参数

    命令行及命令参数 文章目录 命令行及命令参数 1.命令行提示符 2.命令和命令参数 简单的命令 date ls 命令参数 短参数(一个字母) 长参数(多个字母) 参数的值 其它参数 3.小结 4.参考 ...

  7. 翻译 - ASP.NET Core 托管和部署 - 在 Linux 上使用 Nginx 托管 ASP.NET Core 网站

    翻译自 https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/linux-nginx?view=aspnetcore-5.0 本文介 ...

  8. python—打开图像文件报错

    今天使用python打开一张图像文件的时候报错了 UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: illeg ...

  9. 面试常问的ArrayQueue底层实现

    public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...

  10. JSAAS BPM快速开发平台-企业管理软件,专属你的企业管家

    前言: 2020年,企业该如何去选择合适的信息化规划管理软件,基于目前社会软件杂乱无章,选择企业业务贴近的管理软件,甚是困难,市场上一些大品牌公司的产品,定位高,价格高,扩展难,等等一系列的问题,对于 ...