借助BERT论文, 梳理下自然语言处理当前常见的任务.

NLP任务

根据判断主题的级别, 将所有的NLP任务分为两种类型:

  • token-level task: token级别的任务. 如完形填空(Cloze), 预测句子中某个位置的单词; 或者实体识别; 或是词性标注; SQuAD等.
  • sequence-level task: 序列级别的任务, 也可以理解为句子级别的任务. 如情感分类等各种句子分类问题; 推断两个句子的是否是同义等.

token-level task

Cloze task

BERT模型预训练的两个任务之一, 等价于完形填空任务, 即给出句子中其他的上下午token, 推测出当前位置应当是什么token.

解决这个问题就可以直接参考BERT在预训练时使用到的模型: masked language model. 即在与训练时, 将句子中的部分token[masked]这个特殊的token进行替换, 就是将部分单词遮掩住, 然后目标就是预测[masked]对应位置的单词.

这种训练的好处是不需要人工标注的数据. 只需要通过合适的方法, 对现有语料中的句子进行随机的遮掩即可得到可以用来训练的语料. 训练好的模型, 就可以直接使用了.

SQuAD(Standford Question Answering Dataset) task

这是一个生成式的任务. 样本为语句对. 给出一个问题, 和一段来自于Wikipedia的文本, 其中这段文本之中, 包含这个问题的答案, 返回一短语句作为答案.

因为给出答案, 这是一个生成式的问题, 这个问题的特殊性在于最终的答案包含在语句对的文本内容之中, 是有范围的, 而且是连续分布在内容之中的.

因此, 我们找出答案在文本语句的开始和结尾处, 就能找到最后的答案. 通过对文本语句序列中每个token对应的所有hidden vectorsoftmax判断是开始的概率和是结束的概率, 最大化这个概率就能进行训练, 并得到输出的结果.

Named Entity Recognition

本质是对句子中的每个token打标签, 判断每个token的类别.

常用的数据集有:

  • NER(Named Entity Recognition) dataset: 对应于Person, Organization, Location, Miscellaneous, or Other (non-named entity).

sequence-level task

NLI(Natural Language Inference) task

自然语言推断任务, 即给出一对(a pair of)句子, 判断两个句子是entailment(相近), contradiction(矛盾)还是neutral(中立)的. 由于也是分类问题, 也被称为sentence pair classification tasks.

在智能问答, 智能客服, 多轮对话中有应用.

常用的数据集有:

  • MNLI(Multi-Genre Natural Language Inference): 是GLUE Datasets(General Language Understanding Evaluation)中的一个数据集. 是一个大规模的来源众多的数据集, 目的就是推断两个句子是意思相近, 矛盾, 还是无关的.
  • WNLI(Winograd NLI)

Sentence Pair Classification tasks

两个句子相关性的分类问题, NLI task是其中的特殊情况. 经典的此类问题和对应的数据集有:

  • QQP(Quora Question Pairs): 这是一个二分类数据集. 目的是判断两个来自于Quora的问题句子在语义上是否是等价的.
  • QNLI(Question Natural Language Inference): 也是一个二分类问题, 两个句子是一个(question, answer)对. 正样本为answer是对应question的答案, 负样本则相反.
  • STS-B(Semantic Textual Similarity Benchmark): 这是一个类似回归的问题. 给出一对句子, 使用1~5的评分评价两者在语义上的相似程度.
  • MRPC(Microsoft Research Paraphrase Corpus): 句子对来源于对同一条新闻的评论. 判断这一对句子在语义上是否相同.
  • RTE(Recognizing Textual Entailment): 是一个二分类问题, 类似于MNLI, 但是数据量少很多.

Single Sentence Classification tasks

  • SST-2(Stanford Sentiment Treebank): 单句的二分类问题, 句子的来源于人们对一部电影的评价, 判断这个句子的情感.
  • CoLA(Corpus of Linguistic Acceptability): 单句的二分类问题, 判断一个英文句子在语法上是不是可接受的.

SWAG(Situations With Adversarial Generations)

给出一个陈述句子和4个备选句子, 判断前者与后者中的哪一个最有逻辑的连续性, 相当于阅读理解问题.

NLP常见任务的更多相关文章

  1. 一文学会最常见的10种NLP处理技术

    一文学会最常见的10种NLP处理技术(附资源&代码)   技术小能手 2017-11-21 11:08:29 浏览2562 评论0 算法 HTTPS 序列 自然语言处理 神经网络 摘要: 自然 ...

  2. 转-Python自然语言处理入门

      Python自然语言处理入门 原文链接:http://python.jobbole.com/85094/ 分享到:20 本文由 伯乐在线 - Ree Ray 翻译,renlytime 校稿.未经许 ...

  3. t5_sumdoc.txt

    C:\Users\Administrator\Documents\sumdoc 2019\sumdoc t5 final\sumdoc t511C:\Users\Administrator\Docum ...

  4. BERT 论文阅读笔记

    BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...

  5. 常见26种NLP任务的练手项目

    经常有人问我:老大让我完成xxx,我不会,他也不会,但是很着急.这个任务怎么实现啊?这个任务需要什么技术啊?这种情况我遇到有100+次了,而且很多时候问得问题跟具体需要的技术简直是驴唇不对马嘴.所以今 ...

  6. 新手必备|常见30种NLP任务的练手项目(文末福利)

    1.分词 Word Segmentationchqiwang/convseg ,基于CNN做中文分词,提供数据和代码. 2.词预测 Word PredictionKyubyong/word_predi ...

  7. 【NLP】十分钟快览自然语言处理学习总结

    十分钟学习自然语言处理概述 作者:白宁超 2016年9月23日00:24:12 摘要:近来自然语言处理行业发展朝气蓬勃,市场应用广泛.笔者学习以来写了不少文章,文章深度层次不一,今天因为某种需要,将文 ...

  8. 【NLP】蓦然回首:谈谈学习模型的评估系列文章(一)

    统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量. ...

  9. 【NLP】Python NLTK获取文本语料和词汇资源

    Python NLTK 获取文本语料和词汇资源 作者:白宁超 2016年11月7日13:15:24 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集 ...

随机推荐

  1. 解决:While reading from '/Users/***/.pip/pip.conf' [line 4]: option 'extra-index-url' in section 'global' already exists

    解决:While reading from '/Users/***/.pip/pip.conf' [line 4]: option 'extra-index-url' in section 'glob ...

  2. (新手向)N皇后问题详解(DFS算法)

    非常经典的一道题: N皇后问题: 国际象棋中皇后的势力范围覆盖其所在的行.列以及两条对角线,现在考察如下问题:如何在n x n的棋盘上放置n个皇后,使得她们彼此互不攻击 . 免去麻烦我们这里假定n不是 ...

  3. update 字符串拼接

    UPDATE store SET food_ordering =1,self_pickup_remark = CONCAT('self pick up notes:',store_code,short ...

  4. 什么是谷歌PageRank (简称PR值)

    http://www.wocaoseo.com/thread-213-1-1.html 谷歌pageRank是谷歌用来评测网页质量高低的一个工具,主要分为0到10共11个等级,目前有很多的工具或谷歌工 ...

  5. Vue.use() 不一样的发现

    1.Vue.use()首先是可以接受一个函数 var a = function () { console.log(a)}Vue.use(a) // 没有问题会输出a 2.当这个a上面有install属 ...

  6. 微信小程序|小游戏

    [官]小游戏开发 https://developers.weixin.qq.com/minigame/dev/index.html 官网 https://mp.weixin.qq.com 做了4个微信 ...

  7. 笔记-Linux 内存优化

    1.清理前内存使用情况 free -m2.开始清理 echo 1 > /proc/sys/vm/drop_caches 3.清理后内存使用情况 free -m 4.完成! 查看内存条数命令: d ...

  8. 精选PDF版本书籍第一期

    福利概述 精选JAVA必读书籍的PDF版本(来源于网络,侵删). Effective java 中文版(第2版) Head First 设计模式(中文版) Java并发编程的艺术 Java技术手册(第 ...

  9. Linux服务器关联Git,通过执行更新脚本实现代码同步

    1.在Linux服务器安装Git yum install git -y   tips: 卸载Git :  yum remove git   2.在Linux生成ssh key   1)创建用户 git ...

  10. ctf古典密码从0到

    本文首发于“合天智汇”公众号 作者:淡灬看夏丶恋雨 古典密码和现代密码的区别: 代换密码 单表代换密码 字符或数学型 凯撒密码 仿射密码 四方密码 培根密码 图表 标准银河字母 圣堂武士密码 猪圈密码 ...