【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)
题目大意:问使含有$p$个节点的子树分离至少需要去掉几条边。
------------------
设$f[i][j]$表示以$i$为根的子树保留$j$个节点所去掉的最少边数。
初始化$f[u][1]=c[u]$。$c[u]$是这个节点的度。
转移方程$f[u][j]=min(f[u][j],f[u][k]+f[v][j-k]-2)$。为什么要减$2$?这是因为我们在初始化的时候已经把连接父节点和子节点的这条边去掉了。这时候再把他们连起来,为防止重复计算,我们分别把$u->v$和$v->u$的边去掉(代码中是双向连边)。
代码:
//f[u][j]min(f[u][j],f[u][k]+f[v][j-k]-2)
//-2:now->to to->now 减去重复的边 初始化的时候已经减掉了
#include<bits/stdc++.h>
using namespace std;
int c[],n,p,f[][],ans=0x3f3f3f3f;
struct node
{
int next,to;
}edge[];
int head[],cnt;
inline void add(int from,int to)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void dfs(int now,int fa)
{
f[now][]=c[now];
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to!=fa)
{
dfs(to,now);
for (int j=p;j>=;j--)
for (int k=;k<j;k++)
f[now][j]=min(f[now][j],f[now][k]+f[to][j-k]-);
}
}
}
int main()
{
memset(f,0x3f,sizeof(f));
n=read(),p=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
c[x]++;c[y]++;
add(x,y);add(y,x);
}
dfs(,);
for (int i=;i<=n;i++) ans=min(ans,f[i][p]);
printf("%d",ans);
return ;
}
【USACO02FEB】Rebuilding Roads 重建道路 题解(树形DP)的更多相关文章
- [Usaco2002 Feb]Rebuilding Roads重建道路
题目描述 一场可怕的地震后,奶牛用N个牲口棚(1 <= N <= 150,编号1..N)重建了农民John的牧场.奶牛没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是唯一 ...
- Codeforces 835 F Roads in the Kingdom(树形dp)
F. Roads in the Kingdom(树形dp) 题意: 给一张n个点n条边的无向带权图 定义不便利度为所有点对最短距离中的最大值 求出删一条边之后,保证图还连通时不便利度的最小值 $n & ...
- 【bzoj2435】[NOI2011]道路修建 树形dp
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路. 每条道路的修 ...
- [luogu2052 NOI2011] 道路修建 (树形dp)
传送门 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 ...
- bzoj2500: 幸福的道路(树形dp+单调队列)
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...
- [noi2011]道路修建 树形dp
这道题可以说是树形dp的入门题,也可以看成是一道检验[树]这个数据结构的题目: 这道题只能bfs,毕竟10^6的复杂度win下肯定爆栈了: 但是最恶心的还不是这个,实测用printf输出 用cout输 ...
- Codeforces 671D. Roads in Yusland(树形DP+线段树)
调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...
- 洛谷P2052 [NOI2011]道路修建(树形DP)
题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...
- 洛谷4438 [Hnoi2018]道路 【树形dp】
题目 题目太长懒得打 题解 HNOI2018惊现普及+/提高? 由最长路径很短,设\(f[i][x][y]\)表示\(i\)号点到根有\(x\)条未修公路,\(y\)条未修铁路,子树所有乡村不便利值的 ...
随机推荐
- Jmeter系列(41)- Jmeter + Ant +Jenkins 持续集成
如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html Window 环境准备 安装 ant: ...
- LintCode笔记 - 8. 旋转字符串
这一题相对简单,但是代码质量可能不是很好,我分享一下我的做题笔记以及做题过程给各位欣赏,有什么不足望各位大佬指出来 原题目,各位小伙伴也可以试着做一下 . 旋转字符串 中文English 给定一个字符 ...
- 1-GPIO
GPIO的配置: GPIO库函数编程: void LED_init(void)//LED初始化 { GPIO_InitTypeDef GPIO_InitStructure;//定义一个结构体变量 RC ...
- python 生成器(四):生成器基础(四)标准库中的生成器函数
os.walk 这个函数在遍历目录树的过程中产出文件名,因此递归搜索文件系统像for 循环那样简单. 用于过滤的生成器函数 模块 函数 说明 itertools compress(it,sele ...
- unity-TextAsset
定义: 当把Text files导到unity,将会变成TextAsset. 支持的格式: .txt .html .htm .xml .bytes .json .csv .yaml .fnt 注意 不 ...
- MnasNet:经典轻量级神经网络搜索方法 | CVPR 2019
论文提出了移动端的神经网络架构搜索方法,该方法主要有两个思路,首先使用多目标优化方法将模型在实际设备上的耗时融入搜索中,然后使用分解的层次搜索空间,来让网络保持层多样性的同时,搜索空间依然很简洁,能够 ...
- OSCP Learning Notes - Kali Linux
Install Kali Linux : https://www.kali.org/ Common Commands: pwd man ls ls -la cd mkdir rmdir cp mv l ...
- Burp Suite Compare Module - 对比模块
虚拟目标网站: http://10.0.0.15/orangehrm/login.php (RangeHRM) - 可以通过OWASP虚拟机搭建此网站 模拟攻击步骤: 1. 通过设置浏览器代理 ...
- 设计模式:composite模式
目的:使容器和内容具备一致性 实现:将对象组合成树形结构以表示“部分-整体”的层次结构 实例:文件夹中可以包含文件夹也可以包含文件 例子: class Item //接口定义 { public: vi ...
- 深入理解JVM(一)Java内存区域
运行时数据区 程序计数器 当前线程执行的字节码的行号指示器 每条线程都有独立的程序计数器,各线程之间计数器互不影响,独立存储. 如果执行的是java方法,计数器记录正在执行的虚拟机字节码指令的位置: ...