题面

link

前言

去年把我做自闭的一道题,看了一眼题面,发现只有 t1 有点思路,结果写到一半发现自己读错题了,又只能花时间来重构,结果后面的暴力一点都没写(主要是自己当时不会)

然后,这道题还因为某种原因爆玲了,因此我就成了全机房最菜的人。

题解

这道题题面还是很长的,所以我们简化一下题意。

给你一个 n*m 的矩阵,要求你从每一行选一个数,这一行可以选也可以不选,但最后至少选一个,且选的最多的那一列不能超过选的总数的 \(1 \over 2\)

part 1 24 - 32 分

直接爆搜出结果,加上一些剪枝可以拿到一部分了。

part 2 84 分

容斥加 dp。

没有第三个限制我们其实很好求,但带上第三个却有些麻烦。

我们考虑容斥一下,用总的方案数减去不合法的方案数,就是最后答案。

总的方案数就是 \((\displaystyle\prod_{i=1}^{n}\sum_{j=1}^{m} a[i][j]+1)\) -1

解释一下,每一行可以分开来考虑,乘法计数原理,对于这一行可以用加法计数原理,也就是这一行所有的树相加在加一,加一是因为要算上这一行不选的情况。

最后在减一,除去所有行都不选的情况。

对于不合法的方案数,可以考虑是哪一行选多了不合法,枚举每一行不合法的方案数,最后再总和就是不合法的方案数。

我们可以考虑用 dp 来解决这个问题。

设 \(f[i][j][k]\) 表示前 \(i\) 行,选了 \(j\) 列,且现在枚举的这一列选了 \(j\) 个的方案数。

转移就是 f[i][j][k] = f[i-1][j][k] (不选的时候) + f[i-1][j-1][k-1] * a[i][u] (选这一列的时候) + f[i-1][j-1][k] * (sum[i]-a[i][u])(选其他列的时候)

最后在减去不合法的方案数就是最后答案。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define int long long
const int p = 998244353;
int n,m,tot,a[110][2010],sum[110],f[110][110][110];
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10+ch - '0'; ch = getchar();}
return s * w;
}
void calc(int id)//计算不合法的情况
{
memset(f,0,sizeof(f));
f[0][0][0] = 1;
for(int i = 1; i <= n; i++)
{
f[i][0][0] = 1;
for(int j = 1; j <= i; j++)
{
for(int k = 0; k <= j; k++)
{
f[i][j][k] = (f[i-1][j][k] + f[i-1][j-1][k-1] * a[i][id] % p) % p;
f[i][j][k] = (f[i][j][k] + (f[i-1][j-1][k] * (sum[i]-a[i][id]) % p)) % p;
}
}
}
// for(int i = 1; i <= n; i++) for(int j = 1; j <= i; j++) cout<<f[n][i][j]<<endl;
}
signed main()
{
n = read(); m = read(); tot = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
a[i][j] = read();
sum[i] = (sum[i] + a[i][j])%p;
}
tot = (tot * (sum[i]+1))%p;
}
tot -= 1;//总方案数
for(int i = 1; i <= m; i++)
{
calc(i);
for(int j = 1; j <= n; j++)
{
for(int k = j/2+1; k <= j; k++)//枚举选了多少行,以及不合法的情况
{
tot = (tot - f[n][j][k])%p;
}
}
}
printf("%lld\n",(tot%p+p)%p);
return 0;
}

part 3 100 分

你会发现上面会跑的很慢,因为他的复杂度是 O(\(nm^3\)) 的,我们只能想办法优化掉一个 \(m\)

然后,这就是本题最关键也是最巧妙的地方,我们不用管心 \(j\) 与 \(k\) 到底具体选了多少个,

而是关心 \(k > {j \over 2}\) 即 \(2 \times k < j\) ,所以我们可以把第二维和第三维合并成一维,用 \(2 \times k -j\) 的差值来表示(你也可以用 \(k - j\) 来表示)。

转移就是 f[i][j] = f[i-1][j](不选的话差值不变) + f[i-1][j-1] * a[i][k] (选这一列的时候) + f[i-1][j+1] * (sim[i]-a[i][k]) (选其他列的情况)

由于他可能会出现负数,所以我们整体平移 \(n\) 表示 \(2 \times k - j + n\) 的差值就避免了 RE 的问题。

Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define int long long
const int p = 998244353;
int n,m,tot,a[110][2010],sum[110],f[110][220];
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10+ch - '0'; ch = getchar();}
return s * w;
}
void calc(int id)
{
memset(f,0,sizeof(f));
f[0][n] = 1;
for(int i = 1; i <= n; i++)
{
f[i][n] = 1;
for(int j = 0; j <= 2 * n; j++)
{
f[i][j] = (f[i-1][j] + f[i-1][j-1] * a[i][id] % p) % p;
f[i][j] = (f[i][j] + (f[i-1][j+1] * (sum[i]-a[i][id]) % p)) % p;
}
}
// for(int i = 1; i <= n; i++) for(int j = 1; j <= i; j++) cout<<f[n][i][j]<<endl;
}
signed main()
{
n = read(); m = read(); tot = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
a[i][j] = read();
sum[i] = (sum[i] + a[i][j])%p;
}
tot = (tot * (sum[i]+1))%p;
}
tot -= 1;
for(int i = 1; i <= m; i++)
{
calc(i);
for(int j = 1; j <= n; j++)
{
tot = (tot - f[n][n+j])%p;
}
}
printf("%lld\n",(tot%p+p)%p);
return 0;
}

P5664 Emiya 家今天的饭的更多相关文章

  1. 洛谷P5664 Emiya 家今天的饭 问题分析

    首先来看一道我编的题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共 ...

  2. 洛谷P5664 Emiya 家今天的饭 题解 动态规划

    首先来看一道题题: 安娜写宋词 题目背景 洛谷P5664 Emiya 家今天的饭[民间数据] 的简化版本. 题目描述 安娜准备去参加宋词大赛,她一共掌握 \(n\) 个 词牌名 ,并且她的宋词总共有 ...

  3. 洛谷 P5664 Emiya 家今天的饭(84分)

    题目传送门 解题思路: 对于每一个列c,f[i][j][k]表示到第i行,第c列选了j个,其它列一共选了k个,然后我们读题意发现只要j>k,那就一定是不合法的,然后统计所有方案,减去所有不合法方 ...

  4. 【CSP-S 2019】【洛谷P5664】Emiya 家今天的饭【dp】

    题目 题目链接:https://www.luogu.org/problem/P5664 Emiya 是个擅长做菜的高中生,他共掌握 \(n\) 种烹饪方法,且会使用 \(m\) 种主要食材做菜.为了方 ...

  5. 洛谷 P5664 [CSP-S2019] Emiya 家今天的饭

    链接: P5664 题意: 给出一个 \(n*m\) 的矩阵 \(a\),选 \(k\) 个格子(\(1\leq k\leq n\)),每行最多选一个,每列最多选\(⌊\dfrac k2⌋\) 个,同 ...

  6. 【CSP-S 2019】D2T1 Emiya 家今天的饭

    Description 传送门 Solution 算法1 32pts 爆搜,复杂度\(O((m+1)^n)\) 算法2 84pts 裸的dp,复杂度\(O(n^3m)\) 首先有一个显然的性质要知道: ...

  7. CSP2019 Emiya 家今天的饭 题解

    这题在考场上只会O(n^3 m),拿了84分.. 先讲84分,考虑容斥,用总方案减去不合法方案,也就是枚举每一种食材,求用它做超过\(\lfloor \frac{k}{2} \rfloor\) 道菜的 ...

  8. Emiya 家今天的饭

    \(dp_{i,j,k}\)表示前\(i\)种烹饪方法,假设最多的是食材\(j\),食材\(j\)比其他食材多\(k\)次出现 其中\(i \in [1,n],j \in [1,m],k \in [- ...

  9. 【NOIP/CSP2019】D2T1 Emiya 家今天的饭

    这个D2T1有点难度啊 原题: 花了我一下午的时间,作为D2T1的确反常 条件很奇怪,感觉不太直观,于是看数据范围先写了个暴力 写暴力的时候我就注意到了之前没有仔细想过的点,烹饪方式必须不同 虽然a很 ...

随机推荐

  1. CRMEB小程序商城首页强制在微信中打开解决办法

    先说一下,这也算不上二开,小小修改一下而已. CRMEB安装完成后,PC端直接打开首页,真是一言难尽~ 然后,我就想了,用手机浏览器或者PC浏览器直接打开首页也没啥用,干脆直接强制在微信中打开算了! ...

  2. android开发之 listview中的item去掉分割线 隐藏分割线

    有三种方法: 1> 设置android:divider="@null" 2> android:divider="#00000000" #000000 ...

  3. 期望概率DP

    期望概率DP 1419: Red is good ​ Description ​ 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...

  4. Android Studio从Eclipse导项目

    要是你只下了Android Studio 就不能用Eclipse导出gradle项目了 可以直接使用Android Studio导入模块,在Android Studio里Project算Eclipse ...

  5. Roads in the North (树的直径)

    Building and maintaining roads among communities in the far North is an expensive business. With thi ...

  6. Queries for Number of Palindromes(区间dp)

    You've got a string s = s1s2... s|s| of length |s|, consisting of lowercase English letters. There a ...

  7. 小程序开发-媒体组件video使用入门

    video 视频(v2.4.0 起支持同层渲染).相关api:wx.createVideoContext 常见属性如下: 支持的格式 示例: <video src="http://wx ...

  8. Myeclipse 连接数据库(jdbc)

    1.找到DataBase Explorer,如下图所示: 2.点击下图红框内图标,new 3.进入下图界面 如果是JDBC驱动按下图配置: driver name自己起 url一定要注意:jdbc:m ...

  9. java集合类源码学习一

    对于java的集合类,首先看张图 这张图大致描绘出了java集合类的总览,两个体系,一个Collection集合体系一个Map集合体系.在说集合类之前,先说说Iterable这个接口,这个接口在jdk ...

  10. 查看windows和linux下端口是否被占用

    1.windows cmd输入netstat -ano |findstr "端口号" 查看到1202端口被使用的进程PID是10692 输入tasklist |findstr 10 ...