到现在,我们已经完成了对PCA的讲解。我们讲解了重要参数参数n_components,svd_solver,random_state,讲解了三个重要属性:components_, explained_variance_以及explained_variance_ratio_,无数次用到了接口fit,transform,fit_transform,还讲解了与众不同的重要接口inverse_transform。所有的这些内容都可以被总结
在这张图中:

机器学习实战基础(二十五):sklearn中的降维算法PCA和SVD(六) 重要接口,参数和属性总结的更多相关文章

  1. 机器学习实战基础(二十二):sklearn中的降维算法PCA和SVD(三) PCA与SVD 之 重要参数n_components

    重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数. ...

  2. 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述

    概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...

  3. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

  4. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  5. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  6. 机器学习实战基础(二十六):sklearn中的降维算法PCA和SVD(七) 附录

  7. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

  8. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  9. Bootstrap <基础二十五>警告(Alerts)

    警告(Alerts)以及 Bootstrap 所提供的用于警告的 class.警告(Alerts)向用户提供了一种定义消息样式的方式.它们为典型的用户操作提供了上下文信息反馈. 您可以为警告框添加一个 ...

随机推荐

  1. 「雅礼集训 2017 Day4」洗衣服

    题目   点这里看题目. 分析   首先考虑只有洗衣机的情况.我们可以想到,当前洗衣任务结束越早的洗衣机应该被先用,因此可以用堆来动态维护.   再考虑有烘干机的情况.很显然,越晚洗完的衣服应该越早烘 ...

  2. (四)Maven项目工程目录约定

    使用maven创建的工程我们称它为maven工程,maven工程具有一定的目录规范,如下: src/main/java 存放项目的.java文件 src/main/resources 存放项目资源文件 ...

  3. 几种颜色模型(颜色空间):HSV CMYK RGB

    RGB和CMY颜色模型都是面向硬件的,而HSV(Hue Saturation Value)颜色模型是面向用户的. HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. ...

  4. vc++如何知道cppdlg所关联的对话框?

    vc++ 6.0如何知道cppdlg所关联的对话框? 找a.cpp对应的a.h头文件里面找. https://blog.csdn.net/txwtech/article/details/1020824 ...

  5. 【转】Windows下PATH等环境变量详解

    [转]“肖凡的专栏” 博客,请务必保留此出处http://legend2011.blog.51cto.com/3018495/553255 在学习JAVA的过程中,涉及到多个环境变量(environm ...

  6. 3、尚硅谷_SSM高级整合_使用ajax操作实现删除的功能

    点击删除的时候,要删除联系人,这里同点击编辑按钮一样给删除按钮添加点击事件的时候不能使用 $(".delete_btn").click(function(){ }); 这种方式,因 ...

  7. Refresh Java

    当你的知识来源于实践, 你可能会忽略很多细节. 当你的知识来源于阅读, 你可能会很快的忘掉. 那么, 不如在空闲之余, 浏览一遍, 把觉得有必要的记录下来, 也便于以后温故而知新, 何乐而不为呢? 于 ...

  8. GitLab Runner部署(kubernetes环境)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. JDK8--06:Stream流

    一.描述 Stream流提供了筛选与切片.映射.排序.匹配与查找.归约.收集等功能 筛选与切片: filter:接收lambda,从流中排除某些元素 limit(n):截断流,使其元素不超过n ski ...

  10. 【部分】ASP.NET MVC5 - 地址栏传参两种方法

    地址栏传参两种方法 1-  Home/Index/88       (后台控制器读取需要一样的参数名称) 2-  Home/Index?id1=88?id2=99    (Request三种接受方法) ...