一、简介

布隆过滤器(BloomFilter)是一种比较巧妙的概率型数据结构(probabilistic data structure),它是1970年由布隆提出的一种空间空间效率很高的随机数据结构。它利用位数组很简洁地表示一个集合,并判断一个元素是否属于这个集合。一个空的布隆过滤器有长度为M比特的bit数组构成,且所有位都初始化0。一个元素通过K个不同的hash函数随机散列到bit数组的K个位置上,K必须远小于M。K和M的大小由错误率(falsepositiverate)决定。布隆过滤器能够准确判断一个元素不在集合内,但只能判断一个元素可能在集合内。

布隆过滤器存储空间和插入/查询时间都是常数,可以高效地插入和查询。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。布隆过滤器特点是,可以用来确认“某样东西一定不存在或者可能存在”。相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。

Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。Squid 网页代理缓存服务器在 cache digests 中使用了也布隆过滤器。在很多Key-Value系统中也使用了布隆过滤器来加快查询过程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盘中,访问磁盘需要花费大量时间,然而使用布隆过滤器可以快速判断某个Key对应的Value是否存在,因此可以避免很多不必要的磁盘IO操作,只是引入布隆过滤器会带来一定的内存消耗。

二、布隆过滤器相关要素的关系

当向一个集合S中添加元素x使用布隆过滤器进行过滤时,x经过k个散列函数后,在M中得到k个位置,然后,将这k个位置的值设置为1。如果要判断x元素是否在集合S中:x经过k个散列函数后得到k个位置的值,如果这k个值中间存在为0的,说明元素x不在集合中。如果M中的k个位置全为1,则有可能这个元素在这个集合中,也有可能是其他一个或多个元素插入的时候将这k个位置的值置为1了。

如果要在应用中使用布隆过滤器,则要考虑如下要素:

 布隆过滤器的长度该设置为多少;

 该设计多少个散列函数,每个散列函数怎么设计;

 允许的散列结果完全重复率是多少。

假设要处理的数据集合的个数是n,散列函数的个数是k,散列结果重复率为p,布隆过滤器数组的位数为m。则最优位数m和最优函数个数k的计算公式如下:

上述公式的推导过程请参考《详解布隆过滤器的原理,使用场景和注意事项》。

从上述公式可知,只要处理数据的集合数量确认和重复率确认,即可以获得过滤器的数组位数和散列函数的个数。除了设置合适的k和m值外,每个散列函数也必须仔细设计。首先是所有散列函数必须相互独立,没有任何关系,其次是函数输出的值范围足够宽,要尽可能降低输出值的冲突。

跟老猿学Python、学5G!

BloomFilte布隆过滤器简介的更多相关文章

  1. Redis详解(十三)------ Redis布隆过滤器

    本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了 ...

  2. python实现布隆过滤器及原理解析

    python实现布隆过滤器及原理解析     布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...

  3. 从位图到布隆过滤器,C#实现

    前言 本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用. 感谢@时总百忙之中的指导. 布隆过滤器简介 布隆过滤器(Bloom filter)是一种特殊的 Hash ...

  4. 布隆过滤器(BloomFilter)持久化

    摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...

  5. BloomFilter布隆过滤器

    BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...

  6. 浅谈布隆过滤器Bloom Filter

    先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...

  7. 详细解析Redis中的布隆过滤器及其应用

    欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...

  8. Redis中的布隆过滤器及其应用

    什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西 ...

  9. 布隆过滤器的概述及Python实现

    布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...

随机推荐

  1. bash中选择结构、循环结构与break、continue

    if两种选择结构 if 测试条件; then 程序块 else 程序块 fi if 测试条件1; then 程序块 elif 测试条件2; then 程序块 ... elif 程序条件n; then ...

  2. 【QT】QtConcurrent::run()+QThreadPool实现多线程

    往期链接: <QThread源码浅析> <子类化QThread实现多线程> <子类化QObject+moveToThread实现多线程> <继承QRunnab ...

  3. 面试官问我redis数据类型,我回答了8种

    面试官:小明呀,redis 有几种数据结构呀? 小明:8 种 面试官:那你说一下分别是什么? 小明:raw,int,ht,zipmap,linkedlist,ziplist,intset,skipli ...

  4. 网络发布工具 Apache/Nginx

    四大主流发布服务器 注:发布服务器的背后都是socket套接字 1.Apache阿帕奇 - 多进程 2.IIS -多线程 3.Nginx (engine x)(新) -支持异步IO,是现在最快的发布服 ...

  5. HW弹药库之红队作战手册

    红方人员实战手册 声明 Author : By klion Date : 2020.2.15 寄语 : 愿 2020 后面的每一天都能一切安好 分享初衷 一来, 旨在为 "攻击" ...

  6. 死磕以太坊源码分析之p2p节点发现

    死磕以太坊源码分析之p2p节点发现 在阅读节点发现源码之前必须要理解kadmilia算法,可以参考:KAD算法详解. 节点发现概述 节点发现,使本地节点得知其他节点的信息,进而加入到p2p网络中. 以 ...

  7. CorelDRAW快速去除图片背景颜色

    当我们需要从网上借助一些素材图片在CorelDRAW中运用时,往往需要去掉图片的背景颜色.本文小编分享CDR中如何快速去除图片背景颜色的方法,通过此方法可以做简单的照片抠图.合成. 1. 打开Core ...

  8. 需要登录才能下载的文件可以用Folx下载吗

    用苹果电脑的小伙伴有没有发现,有时候文件即时有下载链接也还是要先登录才能下载,那这样的文件用下载器Folx还能下载码?下面小编将在Mac系统平台上,通过一篇教程教大家利用Folx 5的密码管理来保存网 ...

  9. 换系统之后为什么iMindMap会提示“许可证使用的次数过多”

    iMindMap是一款十分受欢迎的思维导图软件,随着12版本的上线,iMindMap新增了很多新用户,最近小编发现有不少新用户在群里反映:"为什么购买iMindMap时说可以支持换机,但是在 ...

  10. 和功能相近的虚拟机软件相比,CrossOver的产品优势有哪些?

    很多用户其实并不喜欢虚拟机软件,他们只是想用回熟悉的Windows应用程序,因为苹果系统与许多软件并不兼容.无奈之下,他们只能安装虚拟机软件.可是虚拟机软件大多比较笨重并且也相对复杂一些,在后期维护上 ...