一、简介

布隆过滤器(BloomFilter)是一种比较巧妙的概率型数据结构(probabilistic data structure),它是1970年由布隆提出的一种空间空间效率很高的随机数据结构。它利用位数组很简洁地表示一个集合,并判断一个元素是否属于这个集合。一个空的布隆过滤器有长度为M比特的bit数组构成,且所有位都初始化0。一个元素通过K个不同的hash函数随机散列到bit数组的K个位置上,K必须远小于M。K和M的大小由错误率(falsepositiverate)决定。布隆过滤器能够准确判断一个元素不在集合内,但只能判断一个元素可能在集合内。

布隆过滤器存储空间和插入/查询时间都是常数,可以高效地插入和查询。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。布隆过滤器特点是,可以用来确认“某样东西一定不存在或者可能存在”。相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。

Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。Squid 网页代理缓存服务器在 cache digests 中使用了也布隆过滤器。在很多Key-Value系统中也使用了布隆过滤器来加快查询过程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盘中,访问磁盘需要花费大量时间,然而使用布隆过滤器可以快速判断某个Key对应的Value是否存在,因此可以避免很多不必要的磁盘IO操作,只是引入布隆过滤器会带来一定的内存消耗。

二、布隆过滤器相关要素的关系

当向一个集合S中添加元素x使用布隆过滤器进行过滤时,x经过k个散列函数后,在M中得到k个位置,然后,将这k个位置的值设置为1。如果要判断x元素是否在集合S中:x经过k个散列函数后得到k个位置的值,如果这k个值中间存在为0的,说明元素x不在集合中。如果M中的k个位置全为1,则有可能这个元素在这个集合中,也有可能是其他一个或多个元素插入的时候将这k个位置的值置为1了。

如果要在应用中使用布隆过滤器,则要考虑如下要素:

 布隆过滤器的长度该设置为多少;

 该设计多少个散列函数,每个散列函数怎么设计;

 允许的散列结果完全重复率是多少。

假设要处理的数据集合的个数是n,散列函数的个数是k,散列结果重复率为p,布隆过滤器数组的位数为m。则最优位数m和最优函数个数k的计算公式如下:

上述公式的推导过程请参考《详解布隆过滤器的原理,使用场景和注意事项》。

从上述公式可知,只要处理数据的集合数量确认和重复率确认,即可以获得过滤器的数组位数和散列函数的个数。除了设置合适的k和m值外,每个散列函数也必须仔细设计。首先是所有散列函数必须相互独立,没有任何关系,其次是函数输出的值范围足够宽,要尽可能降低输出值的冲突。

跟老猿学Python、学5G!

BloomFilte布隆过滤器简介的更多相关文章

  1. Redis详解(十三)------ Redis布隆过滤器

    本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了 ...

  2. python实现布隆过滤器及原理解析

    python实现布隆过滤器及原理解析     布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...

  3. 从位图到布隆过滤器,C#实现

    前言 本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用. 感谢@时总百忙之中的指导. 布隆过滤器简介 布隆过滤器(Bloom filter)是一种特殊的 Hash ...

  4. 布隆过滤器(BloomFilter)持久化

    摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...

  5. BloomFilter布隆过滤器

    BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...

  6. 浅谈布隆过滤器Bloom Filter

    先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...

  7. 详细解析Redis中的布隆过滤器及其应用

    欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...

  8. Redis中的布隆过滤器及其应用

    什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西 ...

  9. 布隆过滤器的概述及Python实现

    布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...

随机推荐

  1. 设置layui表格cell的内边距

    /*设置layui表格cell的内边距*/ .layui-table-cell { height: 50px !important; line-height: 50px !important; }

  2. [读书笔记] Python语言及其应用

    记录下秋招期间看的一本Python工具书<Python语言与其应用>,查漏补缺,部分内容整理如下: 易混淆概念 1.1 删除 - del,remove()和pop() 1.2 复制 - 浅 ...

  3. 用 Cloud Performance Test怎么录制测试脚本

    Cloud Performance Test 云压力测试平台(以下简称:CPT)可以提供一站式全链路云压力测试服务,通过分布式压力负载机,快速搭建系统高并发运行场景,按需模拟千万级用户实时访问,并结合 ...

  4. Docker(33)- 如何修改 docker 容器的端口映射

    如果你还想从头学起 Docker,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1870863.html 问题背景 docker run ...

  5. ISO/OSI参考模型

    ISO/OSI参考模型: 1.应用层:提供应用程序间通信.应用层与应用程序界面沟通,以达到展示给用户的目的.常见的协议:HTTP.HTTPS.FTP.TELNET.SSH.SMTP等 2.表示层:处理 ...

  6. pycharm 报错及解决方法

    1.报错: AttributeError: 'list' object has no attribute 'click' 原因:应是find_element_by 不是 find_elements_b ...

  7. Ubuntu12.10 设置默认命令行启动

    在虚拟机当中安装ubuntu12.10的时候默认把图形界面给装上了,由于不需要使用桌面,所以为了省去每次进入到图形界面然后再用ctrl+F1的方式切换到命令行的步骤,希望能够默认进入的是命令行模式,那 ...

  8. rootfs如何取消登录超时

    一种简便的办法,在etc/inittab文件中,增加一行::respawn:-/bin/login.之后当登录超时后,还会在进入到登录界面,就不会出现登录超时后无法在登录的问题了. #first:ru ...

  9. 前端知识之HTML标签

    1.HTML是一个标准,规定了大家怎么写网页. 2.HTML->>学标签 <标签名>    -->  标记语言(HTML.XML) 3.标签分类 双标签.单标签 (1)& ...

  10. javascript实现文件上传之前的预览功能

    1.首先要给上传文件表单控件和图片控件设置name属性 <div class="form-group">                    <label fo ...