BloomFilte布隆过滤器简介
一、简介
布隆过滤器(BloomFilter)是一种比较巧妙的概率型数据结构(probabilistic data structure),它是1970年由布隆提出的一种空间空间效率很高的随机数据结构。它利用位数组很简洁地表示一个集合,并判断一个元素是否属于这个集合。一个空的布隆过滤器有长度为M比特的bit数组构成,且所有位都初始化0。一个元素通过K个不同的hash函数随机散列到bit数组的K个位置上,K必须远小于M。K和M的大小由错误率(falsepositiverate)决定。布隆过滤器能够准确判断一个元素不在集合内,但只能判断一个元素可能在集合内。
布隆过滤器存储空间和插入/查询时间都是常数,可以高效地插入和查询。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。布隆过滤器特点是,可以用来确认“某样东西一定不存在或者可能存在”。相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。
Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。Squid 网页代理缓存服务器在 cache digests 中使用了也布隆过滤器。在很多Key-Value系统中也使用了布隆过滤器来加快查询过程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盘中,访问磁盘需要花费大量时间,然而使用布隆过滤器可以快速判断某个Key对应的Value是否存在,因此可以避免很多不必要的磁盘IO操作,只是引入布隆过滤器会带来一定的内存消耗。
二、布隆过滤器相关要素的关系
当向一个集合S中添加元素x使用布隆过滤器进行过滤时,x经过k个散列函数后,在M中得到k个位置,然后,将这k个位置的值设置为1。如果要判断x元素是否在集合S中:x经过k个散列函数后得到k个位置的值,如果这k个值中间存在为0的,说明元素x不在集合中。如果M中的k个位置全为1,则有可能这个元素在这个集合中,也有可能是其他一个或多个元素插入的时候将这k个位置的值置为1了。
如果要在应用中使用布隆过滤器,则要考虑如下要素:
布隆过滤器的长度该设置为多少;
该设计多少个散列函数,每个散列函数怎么设计;
允许的散列结果完全重复率是多少。
假设要处理的数据集合的个数是n,散列函数的个数是k,散列结果重复率为p,布隆过滤器数组的位数为m。则最优位数m和最优函数个数k的计算公式如下:
上述公式的推导过程请参考《详解布隆过滤器的原理,使用场景和注意事项》。
从上述公式可知,只要处理数据的集合数量确认和重复率确认,即可以获得过滤器的数组位数和散列函数的个数。除了设置合适的k和m值外,每个散列函数也必须仔细设计。首先是所有散列函数必须相互独立,没有任何关系,其次是函数输出的值范围足够宽,要尽可能降低输出值的冲突。
跟老猿学Python、学5G!
BloomFilte布隆过滤器简介的更多相关文章
- Redis详解(十三)------ Redis布隆过滤器
本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了 ...
- python实现布隆过滤器及原理解析
python实现布隆过滤器及原理解析 布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地 ...
- 从位图到布隆过滤器,C#实现
前言 本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用. 感谢@时总百忙之中的指导. 布隆过滤器简介 布隆过滤器(Bloom filter)是一种特殊的 Hash ...
- 布隆过滤器(BloomFilter)持久化
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包 ...
- BloomFilter布隆过滤器
BloomFilter 简介 当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些 ...
- 浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...
- 详细解析Redis中的布隆过滤器及其应用
欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告 ...
- Redis中的布隆过滤器及其应用
什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西 ...
- 布隆过滤器的概述及Python实现
布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...
随机推荐
- Pycharm激活码亲测有效,2020Pycharm最新激活码免费分享~
Pycharm激活码,亲测有效!!! 如果下边的Pycharm激活码过期失效了的话,大家可以关注微信公众号:Python联盟,然后回复"激活码"即可获取最新Pycharm永久激活码 ...
- youtube-dl 源码看看,例子是下载网页
1, 跑起来 下载 youtube-dl, 配合 launch.json, # 本文中 himala 是代指,具体见文末的 github repo "configurations" ...
- 25类Android常用开源框架
1.图片加载,缓存,处理 框架名称 功能描述 Android Universal Image Loader 一个强大的加载,缓存,展示图片的库,已过时 Picasso 一个强大的图片下载与缓存的库 F ...
- 比特魔方原创,用十分钟在Cocos-BCX上发行了自己的NFT
比特魔方原创 作者 | 第二个区块 出品 |比特魔方 NFT正在积累越来越多的共识.每看到人们讨论NFT,我隐约就能联想到2019年人们谈论DeFi的时候.隐约让我感到欠缺的是,相对2019年的DeF ...
- 80%人会答错的JS基础面试题
这套题第一道题难度最大,我第一遍的回答居然也错的,我悲观估计80%的JavaScript从业人员都答不完全准确 []==![] 得到什么? false, 你还需要看看基础 true, 恭喜你答对了,你 ...
- Shell脚本常用命令整理
该笔记主要整理了一些常见的脚本操作命令,大致如下(持续补充中): 1. while.for循环 1. while.for循环 #!/bin/bash # while循环 v_start_date=${ ...
- 包装类和基本数据类型(以int和Integer为例)
Java的包装类就是可以直接将简单类型的变量表示为一个类.java共有六个包装类:Integer,Long,Float,Double,Character,Boolean,对应六种基本数据类型. 包装类 ...
- AI云原生浅谈:好未来AI中台实践
AI时代的到来,给企业的底层IT资源的丰富与敏捷提出了更大的挑战,利用阿里云稳定.弹性的GPU云服务器,领先的GPU容器化共享和隔离技术,以及K8S集群管理平台,好未来通过云原生架构实现了对资源的灵活 ...
- 第二章epoll
epoll_create:函数实现分析 /* * Open an eventpoll file descriptor. */ SYSCALL_DEFINE1(epoll_create1, int, f ...
- linux 协议栈 实现--编码小知识分析
unlikely 以及likely 作用: rcu_read_lock 以及rcu_read_unlock 作用: rcu_dereference .rcu_dereference_protecte ...