前言:

我们已经介绍了二叉搜索树的相关特性,以及如何在二叉搜索树中实现一些基本操作,比如搜索、插入和删除。熟悉了这些基本概念之后,相信你已经能够成功运用它们来解决二叉搜索树问题。

二叉搜索树的有优点是,即便在最坏的情况下,也允许你在O(h)的时间复杂度内执行所有的搜索、插入、删除操作。

通常来说,如果你想有序地存储数据或者需要同时执行搜索、插入、删除等多步操作,二叉搜索树这个数据结构是一个很好的选择。

一个例子


问题描述:设计一个类,求一个数据流中第k大的数。

一个很显而易见的解法是,先将数组降序排列好,然后返回数组中第k个数。

但这个解法的缺点在于,为了在O(1)时间内执行搜索操作,每次插入一个新值都需要重新排列元素的位置。从而使得插入操作的解法平均时间复杂度变为O(N)。因此,算法总时间复杂度会变为O(N^2)

鉴于我们同时需要插入和搜索操作,为什么不考虑使用一个二叉搜索树结构存储数据呢?

我们知道,对于二叉搜索树的每个节点来说,它的左子树上所有结点的值均小于它的根结点的值,右子树上所有结点的值均大于它的根结点的值。

换言之,对于二叉搜索树的每个节点来说,若其左子树共有m个节点,那么该节点是组成二叉搜索树的有序数组中第m + 1个值。

你可以先独立思考这个问题。请先尝试把多个节点存储到树中。你可能还需要在每个节点中放置一个计数器,以计算以此节点为根的子树中有多少个节点。


设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。

你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。

示例:

int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3);   // returns 4
kthLargest.add(5);   // returns 5
kthLargest.add(10);  // returns 5
kthLargest.add(9);   // returns 8
kthLargest.add(4);   // returns 8

说明: 
你可以假设 nums 的长度≥ k-1 且k ≥ 1。


/*
算法思想:
这道题的数组是不断在变大的,所以每次第K大的数字都在不停的变化。那么我们其实只关心前K大个数字就可以了,所以我们可以使用一个最小堆来保存前K个数字,当再加入新数字后,最小堆会自动排序,然后把排序后的最小的那个数字去除,则堆中还是K个数字,返回的时候只需返回堆顶元素即可。
*/
//算法实现:
class KthLargest {
public:
KthLargest(int k, vector<int> nums) {
for (int num : nums) {
q.push(num);
if (q.size() > k)
q.pop();
}
K = k;
} int add(int val) {
q.push(val);
if (q.size() > K)
q.pop();
return q.top();
} private:
priority_queue<int, vector<int>, greater<int>> q;
int K;
}; /**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/

LeetCode703 流中第k大的元素的更多相关文章

  1. [leetcode]215. Kth Largest Element in an Array 数组中第k大的元素

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  2. 寻找数组中的第K大的元素,多种解法以及分析

    遇到了一个很简单而有意思的问题,可以看出不同的算法策略对这个问题求解的优化过程.问题:寻找数组中的第K大的元素. 最简单的想法是直接进行排序,算法复杂度是O(N*logN).这么做很明显比较低效率,因 ...

  3. [LeetCode] Kth Largest Element in a Stream 数据流中的第K大的元素

    Design a class to find the kth largest element in a stream. Note that it is the kth largest element ...

  4. TopK问题,数组中第K大(小)个元素问题总结

    问题描述: 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 面试中常考的问题之一,同时这道题由于解法众多,也是考察时间复杂 ...

  5. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  6. 寻找数列中第k大的数算法分析

    问题描述:给定一系列数{a1,a2,...,an},这些数无序的,现在求第k大的数. 看到这个问题,首先想到的是先排序,然后直接输出第k大的数,于是得到啦基于排序的算法 算法一: #include&l ...

  7. 寻找数组中第K大的数

    给定一个数组A,要求找到数组A中第K大的数字.对于这个问题,解决方案有不少,此处我只给出三种: 方法1: 对数组A进行排序,然后遍历一遍就可以找到第K大的数字.该方法的时间复杂度为O(N*logN) ...

  8. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  9. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

随机推荐

  1. VMware虚拟机下Centos8 设置静态IP地址

    缘起 我们在平时学习Redis.Nginx等分布式微服务的组件的时候,无法避免的需要用到Linux操作系统,而Linux操作系统的主机来源差不多就三种情况: 真实物理机 阿里云等云服务器 利用虚拟机 ...

  2. echarts饼图默认状态高亮显示

    需求:饼状图默认状态下高亮显示指定内容. 最常见的两种: 一.饼图中间始终默认展示数据总数和统计事项的名字(如下图),这种实现方式比较简单,就不多介绍 二.饼图中间默认展示某一图例的具体数据,鼠标放在 ...

  3. uni-app开发中的各种问题处理

    特别注意: ※:在components下的组件,图片路径用 /static/img/back.png  这样的根路径形式,不要用../static  或者 ../../static 的形式,不然很坑, ...

  4. Java中四舍五入

    1.Math中四舍五入的方法 Math.ceil(double a)向上舍入,将数值向上舍入为最为接近的整数,返回值是double类型 Math.floor(double a)向下舍入,将数值向下舍入 ...

  5. I/O方式(本章最重要)

    目录 程序查询方式 程序查询方式接口结构 例题 本节回顾 程序中断方式 中断的基本概念 工作流程 中断请求 分类 中断请求标记 中断响应 判优实现 优先级设置 中断处理过程 中断隐指令 硬件向量法 中 ...

  6. 五、testNG异常处理

    当程序出现异常或者测试中有异常测试案例可以使他抛出异常 例如:0不可以当做除数,如果将除数设置为0会抛出异常 在testNG上加上 expectedExceptions = ArithmeticExc ...

  7. Golang之应用测试

    Go 应用测试 测试的覆盖率 命令: go test ./ -v -cover 在<Go Web 编程>一书中,有以下结论: 这并不是绝对的,测试文件可以在不同的包,进行测试也是不会出现问 ...

  8. pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)

    直接看代码: 一.tensorflow #tensorflow import tensorflow as tf import random import numpy as np x_data = np ...

  9. Spark性能调优九之常用算子调优

    1.使用mapPartitions算子提高性能 mapPartition的优点:使用普通的map操作,假设一个partition中有1万条数据,那么function就要被执行1万次,但是使用mapPa ...

  10. Python处理邮件内容和提取邮件里的url地址

    最近在搞一个邮箱验证账号注册和登录的模块.总结一下.就当记载.文章中涉及到域名和邮箱等都经过处理. 需求是这样子的,注册某个网站的账号,然后注册需要邮件内容激活,登录的时候如果不是常用设备的话也需要认 ...