[OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法。
Reference: denny的学习专栏 // 臭味相投的一个博客
- Xml保存图片的方法和读取的方式。
- Mat显示内部的多个图片。
- Mat::t() 显示矩阵内容。
本文用它来进行手写数字分类。
在opencv3.0中提供了一个xml文件,里面存放了40个样本,分别是20个数字0的手写体和20个数字1的手写体。本来每个数字的手写体是一张28*28的小图片,在xml使用1*784 的向量保存在<data>中。
这个文件的位置: \opencv\sources\samples\data\data01.xml
- /*//////////////////////////////////////////////////////////////////////////////////////
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- // This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
- // AUTHOR:
- // Rahul Kavi rahulkavi[at]live[at]com
- //
- // contains a subset of data from the popular Iris Dataset (taken from
- // "http://archive.ics.uci.edu/ml/datasets/Iris")
- // # You are free to use, change, or redistribute the code in any way you wish for
- // # non-commercial purposes, but please maintain the name of the original author.
- // # This code comes with no warranty of any kind.
- // #
- // # You are free to use, change, or redistribute the code in any way you wish for
- // # non-commercial purposes, but please maintain the name of the original author.
- // # This code comes with no warranty of any kind.
- // # Logistic Regression ALGORITHM
- // License Agreement
- // For Open Source Computer Vision Library
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.*/
- #include <iostream>
- #include <opencv2/core.hpp>
- #include <opencv2/ml.hpp>
- #include <opencv2/highgui.hpp>
- using namespace std;
- using namespace cv;
- using namespace cv::ml;
- /*
- * Jeff --> Show mutiple-photos from Mat.
- */
- static void showImage(const Mat &data, int columns, const String &name)
- {
- // columns = 28
- Mat bigImage;
- for(int i = 0; i < data.rows; ++i)
- {
- //rows: number of photos.
- // vector --> reshape --> col 28, col 28 ...
- // push_back: show each pic from left to right.
- bigImage.push_back(data.row(i).reshape(0, columns));
- }
- imshow(name, bigImage.t());
- }
- static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
- {
- return 100 * (float)countNonZero(original == predicted) / predicted.rows;
- }
- int main()
- {
- const String filename = "../data/data01.xml";
- cout << "**********************************************************************" << endl;
- cout << filename
- << " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
- cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
- << endl;
- cout << "**********************************************************************" << endl;
- Mat data, labels;
- {
- /*
- * Jeff --> Load xml.
- * transform to Mat.
- * FileStorage.
- */
- cout << "loading the dataset...";
- // Step 1.
- FileStorage f;
- if(f.open(filename, FileStorage::READ))
- {
- // Step 2.
- f["datamat"] >> data;
- f["labelsmat"] >> labels;
- f.release();
- }
- else
- {
- cerr << "file can not be opened: " << filename << endl;
- return 1;
- }
- // Step 3.
- data.convertTo(data, CV_32F);
- labels.convertTo(labels, CV_32F);
- cout << "read " << data.rows << " rows of data" << endl;
- }
- Mat data_train, data_test;
- Mat labels_train, labels_test;
- for(int i = 0; i < data.rows; i++)
- {
- // Step 4.
- if(i % 2 == 0)
- {
- data_train.push_back(data.row(i));
- labels_train.push_back(labels.row(i));
- }
- else
- {
- data_test.push_back(data.row(i));
- labels_test.push_back(labels.row(i));
- }
- }
- cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
- // display sample image
- showImage(data_train, 28, "train data");
- showImage(data_test, 28, "test data");
- /**************************************************************************/
- // simple case with batch gradient
- cout << "training...";
- // Step (1), create classifier.
- Ptr<LogisticRegression> lr1 = LogisticRegression::create();
- // Step (2),
- lr1->setLearningRate(0.001);
- lr1->setIterations(10);
- lr1->setRegularization(LogisticRegression::REG_L2);
- lr1->setTrainMethod(LogisticRegression::BATCH);
- lr1->setMiniBatchSize(1);
- // Step (3), train.
- //! [init]
- lr1->train(data_train, ROW_SAMPLE, labels_train);
- cout << "done!" << endl;
- //--------------------------------------------------------------------------
- cout << "predicting...";
- // Step (4), predict.
- Mat responses;
- lr1->predict(data_test, responses);
- cout << "done!" << endl;
- // Step (5), show prediction report
- cout << "original vs predicted:" << endl;
- // Jeff --> CV_32S is a signed 32bit integer value for each pixel.
- labels_test.convertTo(labels_test, CV_32S);
- cout << labels_test.t() << endl;
- cout << responses.t() << endl;
- cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;
- // Step (6), save the classfier
- const String saveFilename = "NewLR_Trained.xml";
- cout << "saving the classifier to " << saveFilename << endl;
- lr1->save(saveFilename);
- /****************************** End ***************************************/
- // load the classifier onto new object
- cout << "loading a new classifier from " << saveFilename << endl;
- Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
- // predict using loaded classifier
- cout << "predicting the dataset using the loaded classfier...";
- Mat responses2;
- lr2->predict(data_test, responses2);
- cout << "done!" << endl;
- // calculate accuracy
- cout << labels_test.t() << endl;
- cout << responses2.t() << endl;
- cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;
- waitKey(0);
- return 0;
- }
关于逻辑回归:http://blog.csdn.net/pakko/article/details/37878837
什么是逻辑回归?
Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalizedlinear model)。
这一家族中的模型形式基本上都差不多,不同的就是因变量不同。
- 如果是连续的,就是多重线性回归;
- 如果是二项分布,就是Logistic回归;
- 如果是Poisson分布,就是Poisson回归;
- 如果是负二项分布,就是负二项回归。
Logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最常用的就是二分类的Logistic回归。
Logistic回归的主要用途:
- 寻找危险因素:寻找某一疾病的危险因素等;
- 预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;
- 判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。
常规步骤
Regression问题的常规步骤为:
- 寻找h函数(即hypothesis); ==> Sigmoid函数
- 构造J函数(loss函数);
- 想办法使得J函数最小并求得回归参数(θ)
详见reference博客。
[OpenCV] Samples 06: [ML] logistic regression的更多相关文章
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- [机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew N ...
- 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...
- SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)
In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutio ...
- [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...
- SparkMLlib之 logistic regression源码分析
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...
随机推荐
- android开发学习之Level List篇
Level List google 说明:A Drawable that manages a number of alternate Drawables, each assigned a maximu ...
- java-多线程新特性
Java定时器相关Timer和TimerTask类 每个Timer对象相对应的是单个后台线程,用于顺序地执行所有计时器任务TimerTask对象. Timer有两种执行任务的模式,最常用的是sched ...
- mysqld 已死,但是 subsys 被锁
1. Obviously the 'ole check the log file for anything nasty cat /var/log/mysqld.log 2. Stop the serv ...
- Deploying JRE (Native Plug-in) for Windows Clients in Oracle E-Business Suite Release 12 (文档 ID 393931.1)
In This Document Section 1: Overview Section 2: Pre-Upgrade Steps Section 3: Upgrade and Configurati ...
- lxc on centos
终于把lxc的网络配通了,也不知道对不对,记一下 一开始都是雷同的地方 yum install libcgroup lxc lxc-templates 安装lxc cgroup 然后记得 chkcon ...
- mac下android环境搭建笔记(android studio)
本文记录了本人在mac上配置android开发环境的一些过程,为了方便直接选用了官方的IDE– Android Studio .本文包括了android studio的安装.创建第一个hello wo ...
- .net开发笔记(十二) 设计时与运行时的区别(续)
上一篇博客详细讲到了设计时(DesignTime)和运行时(RunTime)的概念与区别,不过没有给出实际的Demo,今天整理了一下,做了一个例子,贴出来分享一下,巩固前一篇博客讲到的内容. 简单回顾 ...
- 渣渣小本求职复习之路每天一博客系列——Unix&Linux入门(5)
前情回顾:昨天简单地介绍了一下如何使用vi编辑器,例如命令模式和插入模式的切换,以及一些简单命令的讲解. —————————————————————————直接就开始吧———————————————— ...
- C#Light/Evil合体啦
决定将C#Light和C#Evil合并成一个项目,毕竟C#Evil包含C#Light所有的功能,分开两个,基本的表达式方面有什么bug还得两头改 暂时就C#Light/Evil这么叫吧,庆祝合体,画了 ...
- 不插网线,看不到IP的解决办法
在Windows中,如果不插网线,就看不到IP地址,即使这个块网卡已经绑定了固定IP,原因是操作系统开启了DHCP Media Sense功能,该功能的作用如下: 在一台使用 TCP/IP 的基于 W ...