java顺序表和树的实现
一、顺序表
1.线性表
//java顺序表的实现,如ArrayList就是用线性表实现的,优点是查找快,缺点是添加或删除要移动很多元素,速度慢
public class SequenceList {
private int MAXLENGTH;//顺序表大小
private int count;//线性表存在数据个数
private Data[] data;
//数据储存
private static class Data{
String name;
int stuNo;
int scores;
}
public void init(int maxLength){
this.MAXLENGTH=maxLength;
data=new Data[MAXLENGTH];
}
//添加一条数据
public void add(Data d){
if(count==MAXLENGTH){
System.out.println("顺序表已满!不可添加");
}
else{
data[count]=d;
count++;
System.out.println("添加成功!");
}
}
//插入任意一条数据
public void insert(Data d,int position){
if(count==MAXLENGTH||position>MAXLENGTH||position<0){
System.out.println("顺序表已满或者插入位置有问题!不可插入");
}
else{
for(int i=count;i>=position;i--){
data[i+1]=data[i];
}
data[position]=d;
count++;
System.out.println("插入成功!");
}
}
//删除数据
public void del(int position){
if(position>count+1||position<0){
System.out.println("删除位置有误!");
}
else{
for(int i=position;i<count;i++){
data[i]=data[i+1];
}
count--;
System.out.println("删除成功!");
}
}
//更新一个数据
public void updata(Data d,int position){
if(position>count+1||position<0){
System.out.println("更新位置有误!");
}
else{
data[position]=d;
System.out.println("更新成功!");
}
}
//查询一个数据
public Data sel(int position){
if(position>count+1||position<0){
System.out.println("查询位置有误!");
return null;
}
else{
return data[position];
}
}
public static void main(String[] args){
SequenceList sl=new SequenceList();
sl.init(10);
Data d=new Data();
sl.add(d);
sl.insert(d, 0);
sl.del(0);
}
}
2.链式表
public class SingleList {
private Node_Single head = null;//头节点
private Node_Single tail = null;//尾节点(空节点)相当于哨兵元素
/**
* 初始化一个链表(设置head )
* @param key
*/
public void initList(Node_Single node){
head = node;
head.next = tail;
}
/**
* 添加一个元素
* @param node
*/
public void addTolist(Node_Single node){
if(head == null){
initList(node);
}else{
Node_Single tmp = head;
head = node;
node.next = tmp;
}
}
/**
* 遍历链表,删除某一个节点
* @param node
* @param myList
*/
public void deleteNode(Node_Single node,SingleList myList){
if(myList == null){
return ;
}
Node_Single tmp =null;
for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
if(tmp.next !=null && node.getKey().equals(tmp.next.getKey())){//该元素和后一个元素相同。指针指向下一元素的下一元素
if(tmp.next.next != null){
tmp.next = tmp.next.next;
}else{
tmp.next = null;
}
}
}
}
public void printList(SingleList myList){
Node_Single tmp =null;
for(tmp = myList.getHead();tmp!=null;tmp = tmp.next){
System.out.println(tmp.getKey());
}
}
public Node_Single getHead() {
return head;
}
public void setHead(Node_Single head) {
this.head = head;
}
public Node_Single getTail() {
return tail;
}
public void setTail(Node_Single tail) {
this.tail = tail;
}
public static void main(String[] args){
SingleList myList = new SingleList();
Node_Single node_1 = new Node_Single("1");
Node_Single node_2 = new Node_Single("2");
Node_Single node_3 = new Node_Single("3");
Node_Single node_4 = new Node_Single("4");
Node_Single node_5 = new Node_Single("5");
Node_Single node_6 = new Node_Single("6");
Node_Single node_7 = new Node_Single("7");
myList.addTolist(node_1);
myList.addTolist(node_2);
myList.addTolist(node_3);
myList.addTolist(node_4);
myList.addTolist(node_5);
myList.addTolist(node_6);
myList.addTolist(node_7);
myList.deleteNode(node_3, myList);
myList.printList(myList);
}
public static class Node_Single {
public String key;//节点的值
public Node_Single next;//指向下一个的指针
public Node_Single(String key){//初始化head
this.key = key;
this.next = null;
}
public Node_Single(String key,Node_Single next){
this.key = key;
this.next = next;
}
public String getKey() {
return key;
}
public void setKey(String key) {
this.key = key;
}
public Node_Single getNext() {
return next;
}
public void setNext(Node_Single next) {
this.next = next;
}
@Override
public String toString() {
return "Node_Single [key=" + key + ", next=" + next + "]";
}
}
}
三、二叉树
import java.util.Stack;
public class BinaryTree {
private TreeNode root=null;
public BinaryTree(){
root=new TreeNode(1,"rootNode(A)");
}
/**
* 创建一棵二叉树
* <pre>
* A
* B C
* D E F
* </pre>
* @param root
* @author WWX
*/
public void createBinTree(TreeNode root){
TreeNode newNodeB = new TreeNode(2,"B");
TreeNode newNodeC = new TreeNode(3,"C");
TreeNode newNodeD = new TreeNode(4,"D");
TreeNode newNodeE = new TreeNode(5,"E");
TreeNode newNodeF = new TreeNode(6,"F");
root.leftChild=newNodeB;
root.rightChild=newNodeC;
root.leftChild.leftChild=newNodeD;
root.leftChild.rightChild=newNodeE;
root.rightChild.rightChild=newNodeF;
}
public boolean isEmpty(){
return root==null;
}
//树的高度
public int height(){
return height(root);
}
//节点个数
public int size(){
return size(root);
}
private int height(TreeNode subTree){
if(subTree==null)
return 0;//递归结束:空树高度为0
else{
int i=height(subTree.leftChild);
int j=height(subTree.rightChild);
return (i<j)?(j+1):(i+1);
}
}
private int size(TreeNode subTree){
if(subTree==null){
return 0;
}else{
return 1+size(subTree.leftChild)
+size(subTree.rightChild);
}
}
//返回双亲结点
public TreeNode parent(TreeNode element){
return (root==null|| root==element)?null:parent(root, element);
}
public TreeNode parent(TreeNode subTree,TreeNode element){
if(subTree==null)
return null;
if(subTree.leftChild==element||subTree.rightChild==element)
//返回父结点地址
return subTree;
TreeNode p;
//现在左子树中找,如果左子树中没有找到,才到右子树去找
if((p=parent(subTree.leftChild, element))!=null)
//递归在左子树中搜索
return p;
else
//递归在右子树中搜索
return parent(subTree.rightChild, element);
}
public TreeNode getLeftChildNode(TreeNode element){
return (element!=null)?element.leftChild:null;
}
public TreeNode getRightChildNode(TreeNode element){
return (element!=null)?element.rightChild:null;
}
public TreeNode getRoot(){
return root;
}
//在释放某个结点时,该结点的左右子树都已经释放,
//所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
public void destroy(TreeNode subTree){
//删除根为subTree的子树
if(subTree!=null){
//删除左子树
destroy(subTree.leftChild);
//删除右子树
destroy(subTree.rightChild);
//删除根结点
subTree=null;
}
}
public void traverse(TreeNode subTree){
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
traverse(subTree.leftChild);
traverse(subTree.rightChild);
}
//前序遍历
public void preOrder(TreeNode subTree){
if(subTree!=null){
visted(subTree);
preOrder(subTree.leftChild);
preOrder(subTree.rightChild);
}
}
//中序遍历
public void inOrder(TreeNode subTree){
if(subTree!=null){
inOrder(subTree.leftChild);
visted(subTree);
inOrder(subTree.rightChild);
}
}
//后续遍历
public void postOrder(TreeNode subTree) {
if (subTree != null) {
postOrder(subTree.leftChild);
postOrder(subTree.rightChild);
visted(subTree);
}
}
//前序遍历的非递归实现
public void nonRecPreOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<TreeNode>();
TreeNode node=p;
while(node!=null||stack.size()>0){
while(node!=null){
visted(node);
stack.push(node);
node=node.leftChild;
}
while(stack.size()>0){
node=stack.pop();
node=node.rightChild;
}
}
}
//中序遍历的非递归实现
public void nonRecInOrder(TreeNode p){
Stack<TreeNode> stack =new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(node!=null||stack.size()>0){
//存在左子树
while(node!=null){
stack.push(node);
node=node.leftChild;
}
//栈非空
if(stack.size()>0){
node=stack.pop();
visted(node);
node=node.rightChild;
}
}
}
//后序遍历的非递归实现
public void noRecPostOrder(TreeNode p){
Stack<TreeNode> stack=new Stack<BinaryTree.TreeNode>();
TreeNode node =p;
while(p!=null){
//左子树入栈
for(;p.leftChild!=null;p=p.leftChild){
stack.push(p);
}
//当前结点无右子树或右子树已经输出
while(p!=null&&(p.rightChild==null||p.rightChild==node)){
visted(p);
//纪录上一个已输出结点
node =p;
if(stack.empty())
return;
p=stack.pop();
}
//处理右子树
stack.push(p);
p=p.rightChild;
}
}
public void visted(TreeNode subTree){
subTree.isVisted=true;
System.out.println("key:"+subTree.key+"--name:"+subTree.data);;
}
/**
* 二叉树的节点数据结构
* @author WWX
*/
private class TreeNode{
private int key=0;
private String data=null;
private boolean isVisted=false;
private TreeNode leftChild=null;
private TreeNode rightChild=null;
public TreeNode(){}
/**
* @param key 层序编码
* @param data 数据域
*/
public TreeNode(int key,String data){
this.key=key;
this.data=data;
this.leftChild=null;
this.rightChild=null;
}
}
//测试
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.createBinTree(bt.root);
System.out.println("the size of the tree is " + bt.size());
System.out.println("the height of the tree is " + bt.height());
System.out.println("*******(前序遍历)[ABDECF]遍历*****************");
bt.preOrder(bt.root);
System.out.println("*******(中序遍历)[DBEACF]遍历*****************");
bt.inOrder(bt.root);
System.out.println("*******(后序遍历)[DEBFCA]遍历*****************");
bt.postOrder(bt.root);
System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************");
bt.nonRecPreOrder(bt.root);
System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************");
bt.nonRecInOrder(bt.root);
System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************");
bt.noRecPostOrder(bt.root);
}
}
java顺序表和树的实现的更多相关文章
- java 顺序表
想看看java版的数据结构,了解一下树的一些操作,写了个顺序表熟悉一下 package com.sqlist; /** * @author xiangfei * 定义一个顺序表 * */ public ...
- 数据结构Java实现02----线性表与顺序表
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- 线性表 及Java实现 顺序表、链表、栈、队列
数据结构与算法是程序设计的两大基础,大型的IT企业面试时也会出数据结构和算法的题目, 它可以说明你是否有良好的逻辑思维,如果你具备良好的逻辑思维,即使技术存在某些缺陷,面试公司也会认为你很有培养价值, ...
- 顺序表----java实现
最简单的数据结构--顺序表,此处以数组为例. 顺序表的优点:支持随机读取,内存空间利用率高. 顺序表的缺点:1.需要预先给出最大数据元素个数,这往往很难实现. 2.插入和删除时需要移动大量数据. Se ...
- Java实现顺序表
利用顺序存储结构表示的顺序表称为顺序表. 它用一组连续的地址存储单元一次存放线性表中的数据元素. 顺序表的实现是数据结构中最简单的一种. 由于代码中已经有详细注释,代码外不再阐述. 下次再陈上关于顺序 ...
- [Java算法分析与设计]--线性结构与顺序表(List)的实现应用
说到线性结构,我们应该立马能够在脑子里蹦出"Array数组"这个词.在Java当中,数组和对象区别基本数据类型存放在堆当中.它是一连串同类型数据存放的一个整体.通常我们定义的方式为 ...
- 数据结构——Java实现顺序表
一.分析 什么是顺序表?顺序表是指用一组地址连续的存储单元依次存储各个元素,使得在逻辑结构上相邻的数据元素存储在相邻的物理存储单元中的线性表.一个标准的顺序表需要实现以下基本操作: 1.初始化顺序表 ...
- 数据结构(java版)学习笔记(二)——线性表之顺序表
顺序表的优点: 随机存取元素方便,根据定位公式容易确定表中每个元素的存储位置,所以要指定第i个结点很方便 简单,直观 顺序表的缺点: 插入和删除结点困难 扩展不灵活,难以确定分配的空间 容易造成浪费 ...
- 使用JAVA数组实现顺序表
1,引入了JAVA泛型类,因此定义了一个Object[] 类型的数组,从而可以保存各种不同类型的对象. 2,默认构造方法创建了一个默认大小为16的Object数组:带参数的构造方法创建一个指定长度的O ...
随机推荐
- html5 响应式布局
一.什么是响应式布局? 响应式布局是Ethan Marcotte在2010年5月份提出的一个概念,简而言之,就是一个网站能够兼容多个终端——而不是为每个终端做一个特定的版本. 这个概念是为 ...
- 关于json序列化和反序列的问题,没事写个案例,希望能帮到那些需要帮忙的朋友!
现在关于json的读写问题,有许许多多的解决方法,因人而异,根据实际问题去选择自己想要的最容易方法.我觉得自带的Newtonsoft.Json是个不错的选择,随便写两个例子吧! 一:关于简单的json ...
- 谈谈java的运行机制
1.高级语言的运行机制 我们编程都是用的高级语言(写汇编和机器语言的大牛们除外),计算机不能直接理解高级语言,只能理解和运行机器语言,所以必须要把高级语言翻译成机器语言,计算机才能运行高级语言所编写的 ...
- word-wrap: break-word; break-word: break-all;区别
word-break:break-all和word-wrap:break-word都是能使其容器如DIV的内容自动换行. 它们的区别就在于: 1,word-break:break-all 例如div宽 ...
- Open Cascade DataExchange IGES
Open Cascade DataExchange IGES eryar@163.com 摘要Abstract:本文结合OpenCascade和Initial Graphics Exchange Sp ...
- 【目录】微软Infer.NET机器学习组件文章目录
本博客所有文章分类的总目录链接:http://www.cnblogs.com/asxinyu/p/4288836.html 1.微软Infer.NET机器学习组件目录 1. Infer.NET连载(一 ...
- Cocos2d-x 3.2 学习笔记(十)Joystick 搖杆控件
最近想做格鬥遊戲,那麼就要有搖杆控件,不想去看別人的代碼就自己寫了個搖杆控件,實現起來很簡單. 話不多說,看代碼: #ifndef __Joystick__ #define __Joystick__ ...
- android 处理302地址
最近项目中需要用到重定向下载,所以找了很多的方法都不合适.因为下载的链接并非单纯的地址,而是需要多次转发的, 在下载的时候用的是URL来打开数据流.但是多次测试并不能对多次跳转的链接打开请求.对于30 ...
- Windows Azure HandBook (2) Azure China提供的服务
<Windows Azure Platform 系列文章目录> 对于传统的自建数据中心,从底层的Network,Storage,Servers,Virtualization,中间层的OS, ...
- 详解css中的position属性
这一次直接进入主题. css中最常用的布局类属性,一个是float,另一个就是定位属性position. 对于position来讲,有以下属性值: static : 无特殊定位,对象处于正常文档流.其 ...