神经网络的逻辑应该都是熟知的了,在这里想说明一下交叉验证

交叉验证方法:

看图大概就能理解了,大致就是先将数据集分成K份,对这K份中每一份都取不一样的比例数据进行训练和测试。得出K个误差,将这K个误差平均得到最终误差

这第一个部分是BP神经网络的建立

参数选取参照论文:基于数据挖掘技术的股价指数分析与预测研究_胡林林

import math
import random
import tushare as ts
import pandas as pd random.seed(0) def getData(id,start,end):
df = ts.get_hist_data(id,start,end)
DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
DATA2=pd.DataFrame(columns=['R'])
DATA['MA20']=df['ma20']
DATA['MA5']=df['ma5']
P=df['close']
P1['high']=df['high']
P1['low']=df['low']
P1['close']=df['close']
P1['open']=df['open']
P1['volume']=df['volume'] DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
templist=(P-P.shift(1))/P.shift(1)
tempDATA = []
for indextemp in templist:
tempDATA.append(1/(1+math.exp(-indextemp*100)))
DATA['r'] = tempDATA
DATA=DATA.dropna(axis=0)
DATA2['R']=DATA['r']
del DATA['r']
DATA=DATA.T
DATA2=DATA2.T
DATAlist=DATA.to_dict("list")
result = []
for key in DATAlist:
result.append(DATAlist[key])
DATAlist2=DATA2.to_dict("list")
result2 = []
for key in DATAlist2:
result2.append(DATAlist2[key])
return result def getDataR(id,start,end):
df = ts.get_hist_data(id,start,end)
DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
DATA2=pd.DataFrame(columns=['R'])
DATA['MA20']=df['ma20'].shift(1)
DATA['MA5']=df['ma5'].shift(1)
P=df['close']
P1['high']=df['high']
P1['low']=df['low']
P1['close']=df['close']
P1['open']=df['open']
P1['volume']=df['volume'] DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
templist=(P-P.shift(1))/P.shift(1)
tempDATA = []
for indextemp in templist:
tempDATA.append(1/(1+math.exp(-indextemp*100)))
DATA['r'] = tempDATA
DATA=DATA.dropna(axis=0)
DATA2['R']=DATA['r']
del DATA['r']
DATA=DATA.T
DATA2=DATA2.T
DATAlist=DATA.to_dict("list")
result = []
for key in DATAlist:
result.append(DATAlist[key])
DATAlist2=DATA2.to_dict("list")
result2 = []
for key in DATAlist2:
result2.append(DATAlist2[key])
return result2 def rand(a, b):
return (b - a) * random.random() + a def make_matrix(m, n, fill=0.0):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat def sigmoid(x):
return 1.0 / (1.0 + math.exp(-x)) def sigmod_derivate(x):
return x * (1 - x) class BPNeuralNetwork:
def __init__(self):
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = [] def setup(self, ni, nh, no):
self.input_n = ni + 1
self.hidden_n = nh
self.output_n = no
# init cells
self.input_cells = [1.0] * self.input_n
self.hidden_cells = [1.0] * self.hidden_n
self.output_cells = [1.0] * self.output_n
# init weights
self.input_weights = make_matrix(self.input_n, self.hidden_n)
self.output_weights = make_matrix(self.hidden_n, self.output_n)
# random activate
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2, 0.2)
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0)
# init correction matrix
self.input_correction = make_matrix(self.input_n, self.hidden_n)
self.output_correction = make_matrix(self.hidden_n, self.output_n) def predict(self, inputs):
# activate input layer
for i in range(self.input_n - 1):
self.input_cells[i] = inputs[i]
# activate hidden layer
for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total += self.input_cells[i] * self.input_weights[i][j]
self.hidden_cells[j] = sigmoid(total)
# activate output layer
for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total += self.hidden_cells[j] * self.output_weights[j][k]
self.output_cells[k] = sigmoid(total)
return self.output_cells[:] def back_propagate(self, case, label, learn, correct):
# feed forward
self.predict(case)
# get output layer error
output_deltas = [0.0] * self.output_n
for o in range(self.output_n):
error = label[o] - self.output_cells[o]
output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
# get hidden layer error
hidden_deltas = [0.0] * self.hidden_n
for h in range(self.hidden_n):
error = 0.0
for o in range(self.output_n):
error += output_deltas[o] * self.output_weights[h][o]
hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
# update output weights
for h in range(self.hidden_n):
for o in range(self.output_n):
change = output_deltas[o] * self.hidden_cells[h]
self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
self.output_correction[h][o] = change
# update input weights
for i in range(self.input_n):
for h in range(self.hidden_n):
change = hidden_deltas[h] * self.input_cells[i]
self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
self.input_correction[i][h] = change
# get global error
error = 0.0
for o in range(len(label)):
error += 0.5 * (label[o] - self.output_cells[o]) ** 2
return error def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
for i in range(limit):
error = 0.0
for i in range(len(cases)):
label = labels[i]
case = cases[i]
error += self.back_propagate(case, label, learn, correct) def test(self,id):
result=getData("", "2015-01-05", "2015-01-09")
result2=getDataR("", "2015-01-05", "2015-01-09")
self.setup(11, 5, 1)
self.train(result, result2, 10000, 0.05, 0.1) for t in resulttest:
print(self.predict(t))

下面是选取14-15年数据进行训练,16年数据作为测试集,调仓周期为20个交易日,大约1个月,对上证50中的股票进行预测,选取预测的涨幅前10的股票买入,对每只股票分配一样的资金,初步运行没有问题,但就是太慢了,等哪天有空了再运行

import BPnet
import tushare as ts
import pandas as pd
import math
import xlrd
import datetime as dt
import time #
#nn =BPnet.BPNeuralNetwork()
#nn.test('000001')
#for i in ts.get_sz50s()['code']:
holdList=pd.DataFrame(columns=['time','id','value'])
share=ts.get_sz50s()['code']
time2=ts.get_k_data('')['date']
newtime = time2[400:640]
newcount=0
for itime in newtime:
print(itime)
if newcount % 20 == 0: sharelist = pd.DataFrame(columns=['time','id','value'])
for ishare in share:
backwardtime = time.strftime('%Y-%m-%d',time.localtime(time.mktime(time.strptime(itime,'%Y-%m-%d'))-432000*4))
trainData = BPnet.getData(ishare, '2014-05-22',itime)
trainDataR = BPnet.getDataR(ishare, '2014-05-22',itime)
testData = BPnet.getData(ishare, backwardtime,itime)
try:
print(testData)
testData = testData[-1]
print(testData)
nn = BPnet.BPNeuralNetwork()
nn.setup(11, 5, 1)
nn.train(trainData, trainDataR, 10000, 0.05, 0.1)
value = nn.predict(testData)
newlist= pd.DataFrame({'time':itime,"id":ishare,"value":value},index=[""])
sharelist = sharelist.append(newlist,ignore_index=True)
except:
pass
sharelist=sharelist.sort(columns ='value',ascending=False)
sharelist = sharelist[:10]
holdList=holdList.append(sharelist,ignore_index=True)
newcount+=1
print(holdList)

神经网络(python源代码)的更多相关文章

  1. Python源代码目录组织结构

  2. Python源代码剖析笔记3-Python运行原理初探

    Python源代码剖析笔记3-Python执行原理初探 本文简书地址:http://www.jianshu.com/p/03af86845c95 之前写了几篇源代码剖析笔记,然而慢慢觉得没有从一个宏观 ...

  3. 《python源代码剖析》笔记 Python的编译结果

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie 1.python的运行过程 1)对python源码进行编译.产生字节码 2)将编译结果交给p ...

  4. 《python源代码剖析》笔记 Python虚拟机框架

    本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie 1. Python虚拟机会从编译得到的PyCodeObject对象中依次读入每一条字节码指令 ...

  5. 如何打包发布加密的 Python 源代码

    这里介绍一种使用 PyInstaller 和 PyArmor 来发布加密 Python 源代码的方式,能够达到以下目的 把所有 Python 源代码打包成为可执行文件,客户不需要 Python 就可以 ...

  6. 决策树(含python源代码)

    因为最近实习的需要,所以用python里的sklearn包重新写了一次决策树 工具:sklearn,http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy:将 ...

  7. python 源代码分析之调试设置

    首先在官方下载源代码,我下载的是最新版本3.4.3版本:https://www.python.org/ftp/python/3.4.3/Python-3.4.3.tgz 解压后的目录如下(借用网上的目 ...

  8. 实现一个单隐层神经网络python

    看过首席科学家NG的深度学习公开课很久了,一直没有时间做课后编程题,做完想把思路总结下来,仅仅记录编程主线. 一 引用工具包 import numpy as np import matplotlib. ...

  9. python 源代码保护 之 xx.py -> xx.so

    前情提要 之前由于项目的需要,需要我们将一部分“关键代码”隐藏起来. 虽然Python 先天支持 将源代码 编译后 生成 xxx.pyc 文件,但是破解起来相当容易 -_-!! 于是搜罗到了另外一种方 ...

随机推荐

  1. C语言fmod()函数:对浮点数取模(求余)

    头文件:#include <math.h> fmod() 用来对浮点数进行取模(求余),其原型为:    double fmod (double x); 设返回值为 ret,那么 x = ...

  2. css狂记

    接着上一篇 html狂记,同样是DIV+CSS传统站点开发,同样只是收集.整理... CSS 背景属性(Background) 属性 描述 CSS background 在一个声明中设置所有的背景属性 ...

  3. 《疯狂Java讲义》(二)---- Java程序的运行机制和JVM

    1. 运行机制 Java源文件(*.java)-----使用javac编译----编译成*.class文件----使用java解释执行----特定平台的机器码 2. 原理 负责解释执行字节码文件的就是 ...

  4. 关于reset.css的疑问:为什么一定要重置浏览器样式?

    自开始做前端算起,我所做过的每一个项目中都会有一个reset.css,也就是重置样式表.我现在想想都不知道第一次是从哪儿弄来的一个重置样式表.快五年了,好像从来都没有质疑过关于重置样式表的内容. 这样 ...

  5. Unity3D基础--动态创建和设置游戏对象

    转载自原文:http://m.blog.csdn.net/blog/smbroe/43488627 1.如何动态创建对象:调用GameObject的CreatePrimitive方法可以按模型进行创建 ...

  6. Reactor模式通俗解释

    Reactor这个词译成汉语还真没有什么合适的,很多地方叫反应器模式,但更多好像就直接叫reactor模式了,其实我觉着叫应答者模式更好理解一些.通过了解,这个模式更像一个侍卫,一直在等待你的召唤,或 ...

  7. cs11_c++_lab6

    expressions.hh #ifndef EXPRESSIONS_HH #define EXPRESSIONS_HH #include "environment.hh" #in ...

  8. windows脚本配置ip地址

    背景:工作上经常涉及到要调试设备,每次都要手动配置静态ip地址,配置完之后还要重新改回来,有时候为了连续调试多台设备,来回手动更改ip,实在麻烦. 思考:想到windows有脚本,可以利用脚本文件达到 ...

  9. Leetcode4:Median of Two Sorted Arrays@Python

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  10. IIS 出现如下错误:PageHandlerFactory-Integrated”

    原因: vs2010默认的是4.0框架,4.0的框架是独立的CLR,和2.0的不同,如果想运行4.0的网站,需要用aspnet_regiis注册4.0框架,然后用4.0的Class池,就可以运行4.0 ...