PRML读书笔记——3 Linear Models for Regression
Linear Basis Function Models
线性模型的一个关键属性是它是参数的一个线性函数,形式如下:
w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫basis function,记作φ(x),于是线性模型可以表示成:
w0看着难受,定义一个函数φ0(x) = 1, 模型的形式再一次简化成:
以上就是线性模型的一般形式。basis function有很多选择,例如Gaussian、sigmoid、tanh (tanh(x) = 2 * sigmoid(a) − 1)。
Maximum likelihood and least squares
训练线性模型的时候,假设cost function为sum-of-squares error function,那么minimize cost function 和 maximize likelihood function是等价的。
另外一个发现就是,w0最终解出来为target values的均值 和 各个特征的basis function values均值的加权和 的差,如下:
Regularized least squares
一般的正则化形式如下:
q = 1, 为lasso(least absolute shrinkage and selection operator) 正则化,其特点是,当λ足够大的时候,某些参数会趋向0,看下图。
q = 2, 二次正则化,使得一些参数足够小。
Bias-Variance trade-off
假设y(x, D)代表基于数据集D训练出来的regression function, h(x)代表数据集D中,给定x条件下target value的期望
squared loss function可以写成:
后一项与y(x)无关,考虑前一项积分里面的部分:
{y(x; D) − h(x)}2 = {y(x; D) − ED[y(x; D)] + ED[y(x; D)] − h(x)}2
= {y(x; D) − ED[y(x; D)]}2 + {ED[y(x; D)] − h(x)}2
+2{y(x; D) − ED[y(x; D)]}{ED[y(x; D)] − h(x)}
这样积分取期望后为:
前一项为bias,后一项为variance。
于是loss function的总体希望就为,(bias)2 + variance + noise
于是就产生了bias-variance trade-off问题, flexible models低bias,高variance;rigid models 高bias,低variance。
在实际应用中,为了观察bias和variance,计算如下:
其中:
y(l)(x)是prediction function。
Bayesian Linear Regression(该段摘自Jian Xiao(iamxiaojian@gmail.com)的笔记Notes on Pattern Recognition and Machine Learning (Bishop))
Bayesian 方法能够避免 over-fitting 的原因是: Marginalizing over the model parameters instead of making point estimates of their values.
假设有多个 model;观察到的 data set 是 D。 Bayesian 的 model comparison 方法是,比较各个模型的后验概率,即:
先验概率 p(Mi) allows us to express a preference for different model。可以假设每个模型的先验概率相等,那么剩下要比较的关键是: p(D|Mi) ——model evidence 或 marginal likelihood。
Model averaging V.S. model selection
Model averaging:把多个模型,用各自模型的后验概率加权平均,得到 predictive distribution为
Model selection: 只选择一个模型,即其中后验概率最大的模型。这是一种 approximation to model averaging。以上分析可以看出,各个 model 的后验概率是关键,而计算后验概率的关键又是 model evidence。
从 sampling 的角度看, Mi 相当于 hyper-parameter,而 w 则是 parameter。 一个 model 不同于另一个 model,是因为 hyper-parameter。
The Evidence Approximation
full Bayesian需要marginalize with respect to hyper-parameters as well as parameters,例如hyperparameter是alpha和beta,w是parameter,那么predictive distribution为:
就比较难,这里就考虑一种approximation,给hyperparameters设置一个特定的数值,这个数值由maximizing the marginal likelihood function 来确定。这个方法叫empirical Bayes、 type 2 maximum likelihood、generalized maximum likelihood、evidence approximation(in machine learning)
Previous Chapter | Next Chapter
PRML读书笔记——3 Linear Models for Regression的更多相关文章
- PRML读书笔记——Introduction
1.1. Example: Polynomial Curve Fitting 1. Movitate a number of concepts: (1) linear models: Function ...
- Andrew Ng机器学习公开课笔记 -- Generalized Linear Models
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...
- [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...
- PRML读书会第三章 Linear Models for Regression(线性基函数模型、正则化方法、贝叶斯线性回归等)
主讲人 planktonli planktonli(1027753147) 18:58:12 大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群 ...
- PRML读书笔记——机器学习导论
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后 ...
- PRML-Chapter3 Linear Models for Regression
Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...
- Coursera台大机器学习课程笔记10 -- Linear Models for Classification
这一节讲线性模型,先将几种线性模型进行了对比,通过转换误差函数来将linear regression 和logistic regression 用于分类. 比较重要的是这种图,它解释了为何可以用Lin ...
- [Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression
Ref: http://blog.csdn.net/daunxx/article/details/51596877 Ref: https://www.youtube.com/watch?v=ipb2M ...
- PRML读书笔记——线性回归模型(上)
本章开始学习第一个有监督学习模型--线性回归模型."线性"在这里的含义仅限定了模型必须是参数的线性函数.而正如我们接下来要看到的,线性回归模型可以是输入变量\(x\)的非线性函数. ...
随机推荐
- Hibernate的检索方式
Hibernate的检索方式 检索方式(查询的方式) 导航对象图检索方式: 根据已经加载的对象导航到其他对象 Customer customer = (Customer)session.get(Cus ...
- C# 退出程序
1.this.Close(); 只是关闭当前窗口,若不是主窗体的话,是无法退出程序的,另外若有托管线程(非主线程),也无法干净地退出: 2.Application.Exit(); 强制所有消息中 ...
- 归一化交叉相关Normalization cross correlation (NCC)
归一化交叉相关Normalization cross correlation (NCC) 相关系数,图像匹配 NCC正如其名字,是用来描述两个目标的相关程度的,也就是说可以用来刻画目标间的相似性.一般 ...
- Android的5大组件
1. Activity组件 Activity组件通常的表现形式是一个单独的界面(screen).每个Activity都是一个单独的类,它扩展实现了Activity基础类.这个类显示为一个由Views组 ...
- Web设计师值得收藏的10个jQuery特效
jQuery已经不是什么新鲜的事儿,以前总把它认为是非常难的东西,也就没有认真去了解他了.直到学完CSS的大部分内容,才开始接触这种"write less, do more" 的J ...
- Leetcode Longest Palindromic Substring
Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...
- Android -- ImageView(控制图片的大小以及旋转的角度)
1.
- MongoDB-C#驱动帮助
查增改删 链接字符串 MongoDB超管+(admin) 单独库用户不加 static string mongoR = string.Format("mongodb://{0}(admin) ...
- ZeroMQ接口函数之 :zmq_init - 初始化ZMQ环境上下文
ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_init zmq_init(3) ØMQ Manual - ØMQ/3.2.5 Name zmq_init - 初 ...
- 转:ibatis的cacheModel
转:ibatis的cacheModel cachemodel是ibatis里面自带的缓存机制,正确的应用能很好提升我们系统的性能. 使用方法:在sqlmap的配置文件中加入 <cacheMode ...