Strategic Game
Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

The input file contains several data sets in text format. Each data set represents a tree with the following description:

the number of nodes 
the description of each node in the following format 
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier 
or 
node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

For example for the tree:

the solution is one soldier ( at the node 1).

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:

Input

4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

Output

1
2

题意:在一棵树里面查找最小的点覆盖。

_______________________________________________________________________________________________________

求最小点覆盖,匈牙利算法。

匈牙利算法,求二分图最大匹配。

一些定义,自己的话:

二分图:可以把图中的点看出人,男女分成2组,男男,女女同性之间没有直接连边。

匹配:二分图中,2中中各取一个人,有边相连,就是一个匹配。就是两夫妻一个在这边一个在那边,这就是匹配,当然一夫一妻制。

最大匹配:最多可组成的夫妻对数就是了。

下面有一些定理(引自网络):

(1)二分图的最小顶点覆盖 

最小顶点覆盖要求用最少的点(X或Y中都行),让每条边都至少和其中一个点关联。

Knoig定理:二分图的最小顶点覆盖数等于二分图的最大匹配数。

 

(2)DAG图的最小路径覆盖

用尽量少的不相交简单路径覆盖有向无环图(DAG)G的所有顶点,这就是DAG图的最小路径覆盖问题。

结论:DAG图的最小路径覆盖数 = 节点数(n)- 最大匹配数(m)

 

(3)二分图的最大独立集

最大独立集问题: 在N个点的图G中选出m个点,使这m个点两两之间没有边.求m最大值

结论:二分图的最大独立集数 = 节点数(n)— 最大匹配数(m)

匈牙利算法可以参考程序中的代码,如果看不懂(本人水平实在有限)可以参考http://blog.csdn.net/dark_scope/article/details/8880547 真正的通俗易懂!

双向边要除以2,切记!

_______________________________________________________________________________________________________

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm> using namespace std;
const int maxn=;
int n;
int head[maxn],js;
struct edge
{
int u,v,next;
}e[maxn*];
int link[maxn];
bool vis[maxn];
void init()
{
memset(e,,sizeof(e));
memset(head,,sizeof(head));
js=;
memset(link,-,sizeof(link));
}
void addage(int u,int v)
{
e[++js].u=u;e[js].v=v;
e[js].next=head[u];head[u]=js;
}
bool dfs(int u)
{
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(!vis[v])
{
vis[v]=;
if(link[v]==- || dfs(link[v]))
{
link[v]=u;
return ;
}
}
}
return ;
}
int main()
{
while(scanf("%d",&n)==)
{
init();
for(int u,s,i=;i<n;i++)
{
scanf("%d:(%d)",&u,&s);
for(int v,j=;j<s;j++)
{
scanf("%d",&v);
addage(u,v);
addage(v,u);
}
}
int ans=;
for(int i=;i<n;i++)
{
memset(vis,,sizeof(vis));
if(dfs(i))ans++;
}
printf("%d\n",ans/);
}
return ;
}

HDU1054 Strategic Game——匈牙利算法的更多相关文章

  1. ACM/ICPC 之 机器调度-匈牙利算法解最小点覆盖集(DFS)(POJ1325)

    //匈牙利算法-DFS //求最小点覆盖集 == 求最大匹配 //Time:0Ms Memory:208K #include<iostream> #include<cstring&g ...

  2. 匈牙利算法——S.B.S.

    匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最 ...

  3. 匈牙利算法与KM算法

    匈牙利算法 var i,j,k,l,n,m,v,mm,ans:longint; a:..,..]of longint; p,f:..]of longint; function xyl(x,y:long ...

  4. poj1274(匈牙利算法)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22809   Accepted: 101 ...

  5. 匈牙利 算法&模板

    匈牙利 算法 一. 算法简介 匈牙利算法是由匈牙利数学家Edmonds于1965年提出.该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 二分图的定义: 设G=(V,E)是一个 ...

  6. 【入门】匈牙利算法+HNOI2006 hero超级英雄

    一.关于匈牙利算法 匈牙利算法是由匈牙利数学家Edmonds提出的,用增广路径求二分图最大匹配的算法. 听起来高端,其实说白了就是: 假设不存在单相思(单身狗偷偷抹眼泪),在一个同性恋不合法的国家里( ...

  7. [ACM_图论] The Perfect Stall 完美的牛栏(匈牙利算法、最大二分匹配)

    描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...

  8. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  9. Poj(1466),最大独立集,匈牙利算法

    题目链接:http://poj.org/problem?id=1466 Girls and Boys Time Limit: 5000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. 关于Oracle GoldenGate中Extract的checkpoint的理解 转载

    什么是checkpoint? 在Oracle 数据库中checkpoint的意思是将内存中的脏数据强制写入到磁盘的事件,其作用是保持内存中的数据与磁盘上的数据一致.SCN是用来描述该事件发生的准确的时 ...

  2. python 2day

    一 优化 username='alex' password=‘alex123’ 可以写成 username,password =‘alex’,'alex123' 二.再次优化 for i in ran ...

  3. Struts2:类型转换器

    常规的String,int能自动转换,但是,有些类型不是这么简单,比如输入字符串,但需要Date.自定义类型,因此需要自定义类型转换类型转换器分全局和局部按惯例,局部的优先级高于全局 需求: 1.输入 ...

  4. 关于Delphi中多线程传递参数的简单问题

    http://bbs.csdn.net/topics/390513469/ unit uThread; interface uses Classes; type Th = class(TThread) ...

  5. 从request获取远程IP地址

    public static String getIpAddr(HttpServletRequest request) { String ip = request.getHeader("X-F ...

  6. 易语言5.6 精简破解版[Ctoo]

    说明:本易语言5.6破解版 加入了[E剑终情]大神制作的完美通杀补丁,本人还修复了静态编译的问题. 关于静态编译失效的问题,大家解压之后会看到易语言根目录有一个"易言语静态编译配置工具&qu ...

  7. 三维场景中使用BillBoard技术

    三维场景中对于渲染效果不是很精致的物体可以使用BillBoard技术实现,使用该技术需要将物体实时朝向摄像机,即计算billboard的旋转矩阵M. 首先根据摄像机位置cameraPos和billBo ...

  8. android开发--数据库(更新或者降低版本)

    Andoird的SQLiteOpenHelper类中有一个onUpgrade方法. 1. 帮助文档里说的"数据库升级"是指什么? 你开发了一个应用,当前是1.0版本.该程序用到了数 ...

  9. 11.用C对32位内存地址的访问方式

    使用一个32位处理器,要对一个32位的内存地址进行访问,可以这样定义 #define RAM_ADDR     (*(volatile unsigned long *)0x0000555F)      ...

  10. sql server2008安装说明 详细完整版

    SQL Server 2008是一个重大的产品版本,它推出了许多新的特性和关键的改进,使得它成为至今为止的最强大和最全面的SQL Server版本. 在现今数据的世界里,公司要获得成功和不断发展,他们 ...