数学定义:

(详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_PbOK70jE2geVioprSVyPTTQuLwN-IhMH8NREmWSDnmcfQEY8w0kq&wd=&eqid=8244c46a0009451a000000035c0e2c39)

有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT).  1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT)的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。

快速傅里叶变换(FFT)是计算离散傅里叶变换(DFT)的快速算法。

DFT 的定义式为:

代码示例:

%fft示例:产生60Hz和150Hz带噪声的信号源,并用傅里叶变换方法查找主频信号
%产生带噪声的声源信号,并提取离散信号
t=0:0.001:0.6;
%噪声信号的主频是60Hz和150Hz
x=sin(2*pi*60*t)+sin(2*pi*150*t);
y=x+2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time(ms)')
grid on; %进行512点的快速傅里叶变换
Y=fft(y,512);
%功率谱测量计算
Pyy=Y.*conj(Y)/512;
f=1000*(0:256)/512;
%绘制频谱图形
figure;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency(Hz)')
grid on;

  

快速傅里叶变换(Fast-Fourier Transform,FFT)的更多相关文章

  1. 快速傅里叶变换(Fast Fourier Transform, FFT)和短时傅里叶变换(short-time Fourier transform,STFT )【资料整理】【自用】

    1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解 ...

  2. 【OI向】快速傅里叶变换(Fast Fourier Transform)

    [OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式 ...

  3. 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理

    实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...

  4. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  5. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...

  6. Python FFT (Fast Fourier Transform)

    np.fft.fft import matplotlib.pyplot as plt import plotly.plotly as py import numpy as np # Learn abo ...

  7. 快速傅里叶变换学习笔记(FFT)

    什么是FFT FFT是用来快速计算两个多项式相乘的一种算法. 如果我们暴力计算两个多项式相乘,复杂度必然是\(O(n^2)\)的,而FFT可以将复杂度降至\(O(nlogn)\) 如何FFT 要学习F ...

  8. 1250 Super Fast Fourier Transform(湘潭邀请赛 暴力 思维)

    湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include&l ...

  9. Fast Fourier Transform

    写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34 ...

随机推荐

  1. .net 三大核心对象

    .net 三大核心对象 HttpRequest 现在总算轮到第一个核心对象出场了.MSDN给它作了一个简短的解释:“使 ASP.NET 能够读取客户端在 Web 请求期间发送的 HTTP 值.”这个解 ...

  2. struts2中各个jar包的具体作用

    -----------------------------------struts2的核心包-------------------------------------- struts2-core-2. ...

  3. Boost Asio(一)初探

    一.简介 Boost Asio ( asynchronous input and output)关注数据的异步输入输出.Boost Asio 库提供了平台无关性的异步数据处理能力(当然它也支持同步数据 ...

  4. UNP学习笔记4——I/O复用:select和poll函数

    1 概述 之间的学习中发现,传统的阻塞式系统调用不仅浪费进程运行时间,而且会带来狠毒问题.因此进程需要有一种预先告知内核的能力,使得内核一旦发现进程指定的一个或者多个I/O条件就绪,它就通知进程.这个 ...

  5. 高次不定方程BSGS算法

    学习数学真是一件赛艇的事. BSGS名字听起来非常有意思,力拔山兮气盖世,北上广深,小步大步...算法其实更有意思,它是用来求解一个方程的 \(A^x≡B mod P\) 是不是特别眼熟,有几个式子长 ...

  6. C/C++中的函数指针

    C/C++中的函数指针 一.引子 今天无聊刷了leetcode上的一道题,如下: Median is the middle value in an ordered integer list. If t ...

  7. 页面定制CSS代码初探(二):自定义h2标题样式 添加阴影 添加底色 等

    故事的开始 先说一下<h2></h2>原先默认是空白的,很难看 然后今天无意中看到一个博友的标题很好看啊,一直就想要这种效果有没有? 好的东西自然要拿过来啦 通过审查元素,果然 ...

  8. (4)pyspark---dataframe清理

    1.交叉表(crosstab): pandas中也有,常和pivot_table比较. 查看家庭ID与评分的交叉表: 2.处理缺失值:fillna withColumn:新增一列数据 cast : 用 ...

  9. LeetCode 856 递归思路详解

    题目描述 给定一个平衡括号字符串 S,按下述规则计算该字符串的分数: () 得 1 分. AB 得 A + B 分,其中 A 和 B 是平衡括号字符串. (A) 得 2 * A 分,其中 A 是平衡括 ...

  10. php 与 nginx 的两种处理方式

    1.IP:Port 监听方式 php-fpm docker pull PHP:2.4-alpine nginx.conf fastcgi_pass 127.0.0.1:9000; php-fpm 在容 ...