十分简单的一道题.
图这么小,跑一边 Floyd 就得到第一问最短路径的答案.
考虑第二问怎么求:
我们可以先将最短路径组成的图从原图中抽离出来,构成新图 $G$.
我们发现,只要 $G$ 的起点与终点联通,那么最短路径就仍然存在.
所以我们想用最小的代价破坏掉 $G$ 点起点与终点的连通性.
这不就是最小割的定义嘛...... 跑一边最大流即可.

Code:

#include <bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 200000
#define N 502
#define ll int
#define inf 1000000
using namespace std;
int n,m;
struct Graph
{
int u,v,dis,c;
Graph(int u = 0,int v = 0,int dis = 0,int c = 0) : u(u), v(v), dis(dis), c(c){}
}G[maxn];
namespace Dinic{
struct Edge
{
int from,to,cap;
Edge(int a = 0,int b = 0,int c = 0):from(a),to(b),cap(c){}
};
vector <Edge> edges;
vector <int> G[N];
queue <int> Q;
int current[N], d[N], vis[N],s,t;
void add(int u,int v,int c)
{
edges.push_back(Edge(u,v,c));
edges.push_back(Edge(v,u,0));
int kk = edges.size();
G[u].push_back(kk - 2);
G[v].push_back(kk - 1);
}
int BFS()
{
memset(vis,0,sizeof(vis));
vis[s] = 1, d[s] = 0;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int sz = G[u].size(),i = 0;i < sz; ++i)
{
Edge e = edges[G[u][i]];
if(e.cap > 0 && !vis[e.to])
{
vis[e.to] = 1, d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int cur)
{
if(x == t) return cur;
int f=0,flow = 0;
for(int sz = G[x].size(),i = current[x];i < sz; ++i)
{
current[x] = i;
Edge e = edges[G[x][i]];
if(e.cap > 0 && d[e.to] == d[x] + 1)
{
f = dfs(e.to, min(cur,e.cap));
cur -= f, flow += f;
edges[G[x][i]].cap -= f, edges[G[x][i] ^ 1].cap += f;
}
if(cur == 0) break;
}
return flow;
}
int maxflow()
{
int ans = 0;
while(BFS())
{
memset(current,0,sizeof(current));
ans += dfs(s,inf);
}
return ans;
}
};
namespace Floyd{
ll dis[N][N];
void init()
{
for(int i = 0;i < N; ++i)
for(int j = 0;j < N; ++j) dis[i][j] = inf;
for(int i = 0;i < N; ++i) dis[i][i] = 0;
}
void calc()
{
for(int k = 1;k <= n; ++k)
for(int i = 1;i <= n; ++i)
for(int j = 1;j <= n; ++j)
dis[i][j] = min(dis[i][k] + dis[k][j], dis[i][j]);
for(int i = 1;i <= m; ++i)
{
Graph e = G[i];
if(dis[1][e.u] + dis[e.v][n] + e.dis == dis[1][n]) Dinic :: add(e.u,e.v,e.c);
if(dis[1][e.v] + dis[e.u][n] + e.dis == dis[1][n]) Dinic :: add(e.v,e.u,e.c);
}
}
};
int main()
{
// setIO("input");
Floyd :: init();
scanf("%d%d",&n,&m);
for(int i = 1,a,b,c,d;i <= m; ++i)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
Floyd :: dis[a][b] = Floyd :: dis[b][a] = c;
G[i] = Graph(a,b,c,d);
}
Floyd :: calc();
printf("%d\n",Floyd :: dis[1][n]);
Dinic :: s = 1, Dinic :: t = n;
printf("%d",Dinic :: maxflow());
return 0;
}

  

BZOJ 1266: [AHOI2006]上学路线route Floyd_最小割的更多相关文章

  1. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  2. bzoj 1266 [AHOI2006] 上学路线 route 题解

    转载请注明:http://blog.csdn.net/jiangshibiao/article/details/23989499 [原题] 1266: [AHOI2006]上学路线route Time ...

  3. bzoj1266 [AHOI2006]上学路线route floyd+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...

  4. 【BZOJ1266】[AHOI2006]上学路线route Floyd+最小割

    [BZOJ1266][AHOI2006]上学路线route Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林 ...

  5. 洛谷 P4300 BZOJ 1266 [AHOI2006]上学路线route

    题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在 ...

  6. BZOJ 1266: [AHOI2006]上学路线route

    题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:"很 ...

  7. BZOJ1266 [AHOI2006]上学路线route Floyd 最小割 SAP

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1266 题意概括 一个无向图,第一问:从1~n的最短路. 第二问,删除价值总和最小的边,使得1~n的 ...

  8. bzoj 1266 1266: [AHOI2006]上学路线route

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2356  Solved: 841[Submit][S ...

  9. [BZOJ 1266][AHOI2006]上学路线(最短路+最小割)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1266 分析: 很简单的题目,容易想到就是把所有的最短路径挑出来,然后在这个图里跑最小割 ...

随机推荐

  1. oculus network error ovr53225466

    最近调试oculus,搬运代码到win10平台,发现最近FB对oculus的服务程序进行了更新,必须要登陆账号才能进行调试. 于是安装oculusclient,但是登陆的过程中出现了问题,如果不用代理 ...

  2. 世界对一名颓废者的惩罚——SDOI2019R1游记

    在清明节前,我仿佛已经成为了一名退役选手 一个月做五道题,10天不碰电脑 终日只知颓废 SDOI2019,希望能引起我的警戒吧 Day 0 不说了. 晚上做了三道斯波题(包括去年多省联考的D1T1), ...

  3. [SCSS] Convert SCSS Variable Arguments to JavaScript

    We will learn how to convert variable arguments by using rest operator in JavaScript. .sass-btn { co ...

  4. 单片机显示原理(LCD1602)

    一.接口 LCD1602是很多单片机爱好者较早接触的字符型液晶显示器,它的主控芯片是HD44780或者其它兼容芯片.与此相仿的是LCD12864液晶显示器,它是一种图形点阵显示器,能显示的内容比LCD ...

  5. 为大家推荐一本书《jQuery Mobile 即学即用》

    这是人民邮电出版社出版的一本面向前端开发者的书. 非常喜欢书名"即学即用"这是每一个程序开发者的理想模式. 不同国家的人有不同的思维方式.这本书的作者是 [阿根廷] Maximil ...

  6. 新建maven web工程报错

    问题: 检查本地仓库: 检查1.0跟release的文件夹: 试试:http://www.ithao123.cn/content-8028507.html 然后选择maven catalog下的:(这 ...

  7. sikuli_ide打开提示没有对应的javaw

    对于sikuli,需要安装32位的jdk且不能高于1.7的版本 对于64位系统的C盘,Program Files文件夹是64位的,Program File(x86)文件夹是32位的 需要安装一个32位 ...

  8. 将linux下的rm命令改造成移动文件至回收站

    将linux下的rm命令改造成移动文件至回收站 rm是Linux下文件删除的命令,它是Linux下非常强大却又非常危险的一条命令,特别是rm -rf有时候强大到让你欲哭无泪,当你想清除当前目录下的所有 ...

  9. HDU1561 The more, The Better

    HDU1561 The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  10. hdoj--3072--Intelligence System(scc+缩点+数据去重)

    Intelligence System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...