[洛谷 P2365] 任务安排 (线性dp)
3月14日第二题!!
题目描述
N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。
例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。
输入输出格式
输入格式:
第一行是N(1<=N<=5000)。
第二行是S(0<=S<=50)。
下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。
输出格式:
一个数,最小的总费用。
输入输出样例
输入样例:
5
1
1 3
3 2
4 3
2 3
1 4
输出样例:
153
一上来先把n^3写出来
f[i][j] 表示前i个分j批的最小花费
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAX=5010;
const int INF=0x3f3f3f3f;
int n,s,minn=INF;
int ti[MAX],fi[MAX],f[MAX][MAX];
int main() {
scanf("%d %d",&n,&s);
for(int i=1;i<=n;i++) {
scanf("%d %d",&ti[i],&fi[i]);
ti[i]+=ti[i-1];fi[i]+=fi[i-1];
// cout<<ti[i]<<" "<<fi[i]<<endl;
}
memset(f,0x3f,sizeof f);
f[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++) {
for(int k=0;k<i;k++){
f[i][j]=min(f[i][j],f[k][j-1]+(s*j+ti[i])*(fi[i]-fi[k]));
}
}
for(int i=1;i<=n;i++) minn=min(minn,f[n][i]);
printf("%d",minn);
return 0;
}
n=5000,嗯好像过不了。
考虑升级成n^2 发现可以把批数忽略掉
只需要提前加上后面多出的花费即可。
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAX=5010;
const int INF=0x3f3f3f3f;
int n,s;
int ti[MAX],fi[MAX],f[MAX];
int main() {
scanf("%d %d",&n,&s);
for(int i=1;i<=n;i++) {
scanf("%d %d",&ti[i],&fi[i]);
ti[i]+=ti[i-1];fi[i]+=fi[i-1];
}
memset(f,0x3f,sizeof f);
f[0]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<i;j++) {
f[i]=min(f[i],f[j]+ti[i]*(fi[i]-fi[j])+s*(fi[n]-fi[j]));
}
printf("%d",f[n]);
return 0;
}
搞定收工233~。
[洛谷 P2365] 任务安排 (线性dp)的更多相关文章
- 洛谷 P2365 任务安排【dp】
其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...
- 2018.07.09 洛谷P2365 任务安排(线性dp)
P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...
- 洛谷P2365 任务安排(斜率优化dp)
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...
- [洛谷P2365] 任务安排
洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...
- 2018.08.16 洛谷P2029 跳舞(线性dp)
传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...
- 2018.11.04 洛谷P2679 子串(线性dp)
传送门 为什么前几年的noipnoipnoip总是出这种送分题啊? 这个直接线性dpdpdp不就完了吗? f[i][j][k][0/1]f[i][j][k][0/1]f[i][j][k][0/1]表示 ...
- 洛谷P2365 任务安排 [解法二 斜率优化]
解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...
- 洛谷P2365 任务安排 [解法一]
题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...
- 洛谷 P2365 任务安排_代价提前计算 + 好题
最开始,笔者将状态 fif_{i}fi 定义为1到i的最小花费 ,我们不难得到这样的一个状态转移方程,即 fi=(sumti−sumtj+S+Costj)∗(sumfi−sumfj)f_{i}=(s ...
随机推荐
- codevs——T1220 数字三角形
http://codevs.cn/problem/1043/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Descr ...
- POJ 3280 Cheapest Palindrome DP题解
看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...
- 【c语言】 模拟实现库函数的atoi函数
// 模拟实现库函数的atoi函数 #include <stdio.h> #include <string.h> #include <assert.h> #incl ...
- Xamarin Mono For Android、Monotouch 安装
一.Windows下面的安装 1. 安装环境介绍: Win8.1 企业版64位或Win7 64.VS2013 update4 2. 安装jdk 到oracle官方下载jdk-8u45-wi ...
- C# 尝试读取或写入受保护的内存 。这通常指示其他内存已损坏。
在C#中调用别人的DLL的时候有时候出现 尝试读取或写入受保护的内存 .这通常指示其他内存已损坏. 在传值的时候还是用指针,再在C#中做转换就好了. 解决办法: [DllImport("AP ...
- 局部变量,全局变量,extend,static
main.c #include <stdio.h> #include "zs.h" /* 局部变量是定义在函数.代码块.函数形参列表.存储在栈中,从定义的那一行开始作用 ...
- Android下添加新的自定义键值和按键处理流程【转】
本文转载自: Android下添加新的自定义键值和按键处理流程 说出来不怕大家笑话,我写这篇博客的原因在于前几天去一个小公司面试Android系统工程师,然后在面试的时候对方的技术总监问了我一 ...
- 用命令行在本地创建一个库并上传到Github
1 如何在本地创建一个仓库并上传到github? 基本步骤: $ mkdir blog //在桌面上创建一个叫"blog"的目录 $ cd blog //"cd blo ...
- CI中的超级对象
CI中的超级对象就是当前控制器对象,它提供了很多属性,可以通过var_dump($this)打印所有的超级对象: load可以理解为一个加载器,加载了很多功能,可以理解为当你使用 $this -> ...
- 体验:Anko + Kotlin
● 依赖:compile 'org.jetbrains.anko:anko:0.10.0' ● 界面: import android.view.View import org.jetbrains.an ...