3月14日第二题!!

题目描述

N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

输入输出格式

输入格式:

第一行是N(1<=N<=5000)。

第二行是S(0<=S<=50)。

下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

输出格式:

一个数,最小的总费用。

输入输出样例

输入样例:

5

1

1 3

3 2

4 3

2 3

1 4

输出样例:

153

一上来先把n^3写出来

f[i][j] 表示前i个分j批的最小花费

code:

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std; const int MAX=5010;
const int INF=0x3f3f3f3f;
int n,s,minn=INF;
int ti[MAX],fi[MAX],f[MAX][MAX]; int main() {
scanf("%d %d",&n,&s);
for(int i=1;i<=n;i++) {
scanf("%d %d",&ti[i],&fi[i]);
ti[i]+=ti[i-1];fi[i]+=fi[i-1];
// cout<<ti[i]<<" "<<fi[i]<<endl;
}
memset(f,0x3f,sizeof f);
f[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++) {
for(int k=0;k<i;k++){
f[i][j]=min(f[i][j],f[k][j-1]+(s*j+ti[i])*(fi[i]-fi[k]));
}
}
for(int i=1;i<=n;i++) minn=min(minn,f[n][i]);
printf("%d",minn);
return 0;
}

n=5000,嗯好像过不了。

考虑升级成n^2 发现可以把批数忽略掉

只需要提前加上后面多出的花费即可。

code:

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std; const int MAX=5010;
const int INF=0x3f3f3f3f;
int n,s;
int ti[MAX],fi[MAX],f[MAX]; int main() {
scanf("%d %d",&n,&s);
for(int i=1;i<=n;i++) {
scanf("%d %d",&ti[i],&fi[i]);
ti[i]+=ti[i-1];fi[i]+=fi[i-1];
}
memset(f,0x3f,sizeof f);
f[0]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<i;j++) {
f[i]=min(f[i],f[j]+ti[i]*(fi[i]-fi[j])+s*(fi[n]-fi[j]));
}
printf("%d",f[n]);
return 0;
}

搞定收工233~。

[洛谷 P2365] 任务安排 (线性dp)的更多相关文章

  1. 洛谷 P2365 任务安排【dp】

    其实是可以斜率优化的但是没啥必要 设st为花费时间的前缀和,sf为Fi的前缀和,f[i]为分组到i的最小花费 然后枚举j转移,考虑每次转移都是把j到i分为一组这样意味着j及之后的都要增加s的时间,同时 ...

  2. 2018.07.09 洛谷P2365 任务安排(线性dp)

    P2365 任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间 ...

  3. 洛谷P2365 任务安排(斜率优化dp)

    传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...

  4. [洛谷P2365] 任务安排

    洛谷题目链接:任务安排 题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时 ...

  5. 2018.08.16 洛谷P2029 跳舞(线性dp)

    传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...

  6. 2018.11.04 洛谷P2679 子串(线性dp)

    传送门 为什么前几年的noipnoipnoip总是出这种送分题啊? 这个直接线性dpdpdp不就完了吗? f[i][j][k][0/1]f[i][j][k][0/1]f[i][j][k][0/1]表示 ...

  7. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  8. 洛谷P2365 任务安排 [解法一]

    题目描述 N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti.在每批任务开始 ...

  9. 洛谷 P2365 任务安排_代价提前计算 + 好题

    最开始,笔者将状态 fif_{i}fi​ 定义为1到i的最小花费 ,我们不难得到这样的一个状态转移方程,即 fi=(sumti−sumtj+S+Costj)∗(sumfi−sumfj)f_{i}=(s ...

随机推荐

  1. C#中的stathread标签【待填的坑】

    stathread这种线程是给COM组件使用的线程,如果不适用com对象 如果com对象标记为sta的,则它就是单线程运行的 stathread 组件线程遗留的标签

  2. MYSQL 源码解读系列 [线程池。。] ----dennis的博客

    http://blog.sina.com.cn/s/articlelist_1182000643_0_1.html

  3. javascript的函数、创建对象、封装、属性和方法、继承

    转自原文javascript的函数.创建对象.封装.属性和方法.继承 一,function 从一开始接触到js就感觉好灵活,每个人的写法都不一样,比如一个function就有N种写法 如:functi ...

  4. POJ 1673

    可以证明O是三角形ABC的垂心. 作图辅助线,一个很重要的技巧是延长中线等中线. 可以证明三角形DNA全等于ABC.然后通过角度变换容易证明AQ垂直于BC. #include <iostream ...

  5. Oracle 使用sqlnet.ora/trigger限制/允许某IP或IP段访问指定用户

    Oracle 使用sqlnet.ora/trigger限制/允许某IP或IP段访问指定用户 学习了:http://blog.itpub.net/28602568/viewspace-2092858/ ...

  6. 18110 Koishi's travel, Satori's travel

    18110 Koishi's travel, Satori's travel 该题有题解 时间限制:4000MS  内存限制:65535K提交次数:0 通过次数:0 题型: 编程题   语言: 不限定 ...

  7. java泛型具体解释

    为什么引入泛型 bug是编程的一部分,我们仅仅能尽自己最大的能力降低出现bug的几率,可是谁也不能保证自己写出的程序不出现不论什么问题. 错误可分为两种:编译时错误与执行时错误.编译时错误在编译时能够 ...

  8. POJ 3126 Prime Path SPFA

    http://poj.org/problem? id=3126 题目大意: 给你两个四位的素数s和t,要求每次改变一个数字.使得改变后的数字也为素数,求s变化到t的最少变化次数. 思路: 首先求出全部 ...

  9. 第18章 Redis数据结构常用命令

    18-1 字符串的一些基本命令 18-1 :配置Spring关于Redis字符串的运行环境 <bean id="poolConfig" class="redis.c ...

  10. 用虚拟机创建win7 32位系统来测试win 7 64位系统无法安装cad 2004 缺少acdb16.dll的问题