time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

The ICM ACPC World Finals is coming! Unfortunately, the organizers of the competition were so busy preparing tasks that totally missed an important technical point — the organization of electricity supplement for all the participants workstations.

There are n computers for participants, the i-th of which has power equal to positive integer pi. At the same time there are m sockets available, the j-th of which has power euqal to positive integer sj. It is possible to connect the i-th computer to the j-th socket if and only if their powers are the same: pi = sj. It is allowed to connect no more than one computer to one socket. Thus, if the powers of all computers and sockets are distinct, then no computer can be connected to any of the sockets.

In order to fix the situation professor Puch Williams urgently ordered a wagon of adapters — power splitters. Each adapter has one plug and one socket with a voltage divider between them. After plugging an adapter to a socket with power x, the power on the adapter’s socket becomes equal to , it means that it is equal to the socket’s power divided by two with rounding up, for example and .

Each adapter can be used only once. It is possible to connect several adapters in a chain plugging the first to a socket. For example, if two adapters are plugged one after enother to a socket with power 10, it becomes possible to connect one computer with power 3 to this socket.

The organizers should install adapters so that it will be possible to supply with electricity the maximum number of computers c at the same time. If there are several possible connection configurations, they want to find the one that uses the minimum number of adapters u to connect c computers.

Help organizers calculate the maximum number of connected computers c and the minimum number of adapters u needed for this.

The wagon of adapters contains enough of them to do the task. It is guaranteed that it’s possible to connect at least one computer.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 200 000) — the number of computers and the number of sockets.

The second line contains n integers p1, p2, …, pn (1 ≤ pi ≤ 109) — the powers of the computers.

The third line contains m integers s1, s2, …, sm (1 ≤ si ≤ 109) — the power of the sockets.

Output

In the first line print two numbers c and u — the maximum number of computers which can at the same time be connected to electricity and the minimum number of adapters needed to connect c computers.

In the second line print m integers a1, a2, …, am (0 ≤ ai ≤ 109), where ai equals the number of adapters orginizers need to plug into the i-th socket. The sum of all ai should be equal to u.

In third line print n integers b1, b2, …, bn (0 ≤ bi ≤ m), where the bj-th equals the number of the socket which the j-th computer should be connected to. bj = 0 means that the j-th computer should not be connected to any socket. All bj that are different from 0 should be distinct. The power of the j-th computer should be equal to the power of the socket bj after plugging in abj adapters. The number of non-zero bj should be equal to c.

If there are multiple answers, print any of them.

Examples

input

2 2

1 1

2 2

output

2 2

1 1

1 2

input

2 1

2 100

99

output

1 6

6

1 0

【题解】



将插口按照power值升序排;

顺序处理每个power,如果有和当前处理的插头power相同的电脑。那么就把那个电脑插到这个插头上。如果没有,就一直除2,直到可以或power=0。为什么可以遇到就插上去呢?如果插在后面的插头,虽然可能也可以,但是必然要多耗费除2的次数(升序排的意义在此);而要满足除2次数最少则必然是这样的;

心里有些疑问吧

/*比如某个插头
power为8
同时有两个电脑power分别为4和1;
那我们肯定是把power为4的电脑插在这个插头上的(只除一次2);
而那个power为1的电脑,如果后面还有插头;
比如power=16;- >除4次;
总共5次
那是不是一开始power为8的的时候先插这个power为1的好点?
1 -> 8 :3次
后面4的时候
4 ->16:2次
总共5次
结果一样;
再试下 插头为32 64
电脑为2和16
先插16的
32
16 ->32 ->1
64
2->64 ->5 先插2的
32
2 -> 32 -> 4
64
16->64 >2
最后结果也是一样的;
但是如果没有后面那个插头显然先处理高power的更优;因为减少的次数少;
用map来快速判断有没有某个电脑的power的为x
*/
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map> using namespace std; const int MAXN = 300000; struct abc
{
int x, pos;
}; map <int, int> fre;
vector <int> v[MAXN];
int n, m, ans1[MAXN] = { 0 }, ans2[MAXN] = { 0 }, cnt = 0;
abc a[MAXN]; bool cmp(abc a, abc b)
{
return a.x < b.x;
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
int x;
scanf("%d", &x);
int temp = fre[x];
if (temp == 0)
{
fre[x] = ++cnt;
v[cnt].push_back(i);
}
else
v[temp].push_back(i);
} for (int i = 1; i <= m; i++)
scanf("%d", &a[i].x), a[i].pos = i; sort(a + 1, a + 1 + m,cmp); int total = 0, num = 0;
for (int i = 1; i <= m; i++)
{
int sub = 0;
int x = a[i].x;
while (x)
{
int xx = fre[x];
if (xx)
{
int len = v[xx].size();
if (len)
{
int it = v[xx][len - 1];
ans2[it] = a[i].pos;
ans1[a[i].pos] = sub;
v[xx].pop_back();
total += sub;
num++;
break;
}
else
fre.erase(x);
}
if (x == 1)
break;
x = (x + 1) >> 1;
sub++;
}
}
printf("%d %d\n", num, total);
for (int i = 1; i <= m; i++)
printf("%d%c", ans1[i], i == m ? '\n' : ' ');
for (int i = 1; i <= n; i++)
printf("%d%c", ans2[i], i == n ? '\n' : ' ');
return 0;
}

【20.69%】【codeforces 732E】Sockets的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. 【20.23%】【codeforces 740A】Alyona and copybooks

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  3. 【20.51%】【codeforces 610D】Vika and Segments

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【codeforces 515C】Drazil and Factorial

    [题目链接]:http://codeforces.com/contest/515/problem/C [题意] 定义f(n)=n这个数各个位置上的数的阶乘的乘积; 给你a; 让你另外求一个不含0和1的 ...

  5. 【codeforces 766E】Mahmoud and a xor trip

    [题目链接]:http://codeforces.com/contest/766/problem/E [题意] 定义树上任意两点之间的距离为这条简单路径上经过的点; 那些点上的权值的所有异或; 求任意 ...

  6. 【codeforces 797E】Array Queries

    [题目链接]:http://codeforces.com/problemset/problem/797/E [题意] 给你一个n个元素的数组; 每个元素都在1..n之间; 然后给你q个询问; 每个询问 ...

  7. 【codeforces 509A】Maximum in Table

    [题目链接]:http://codeforces.com/contest/509/problem/A [题意] 给你一个递推式f[i][j] = f[i-1][j]+f[i][j-1]; 让你求f[i ...

  8. 【codeforces 757D】Felicity's Big Secret Revealed

    [题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...

  9. 【codeforces 760D】Travel Card

    [题目链接]:http://codeforces.com/contest/760/problem/D [题意] 去旅行,有3种类型的乘车票; 第一种:只能旅行一次20元 第二种:按时间计算,90分钟内 ...

随机推荐

  1. WCF学习笔记——对象序列化

    当试图通过Web服务.WCF这样的远程处理技术将一个对象复制到远端时,具有对类型序列化的能力很关键. 一 序列化基础 序列化描述了持久化或传输一个对象的状态到流的过程(.NET将对象序列化到流,流是字 ...

  2. git 配置用户名email地址,设置密码

  3. 算法练习--二分搜索哈希表-JS 实现

    1. 以哈希KEY的值建立二叉哈希表 2. 依据传入的哈希值使用二分法搜索 详细实现例如以下: function binarySearchTable(comp){ this.comp = comp; ...

  4. heredoc(实现模板与代码的分离)

    heredoc(实现模板与代码的分离) 一.总结 heredoc实现模板与代码的分离,实现的是在后台编程语言中批量输出html代码,在这个批量输出的html代码中又可以嵌套编程语言变量.所以很方便. ...

  5. jsp页面无法解析EL表达式问题

    Servlet版本的问题.原来Servlet中可以设定是否解析EL表达式,只有2.4版本的Servlet默认是解析EL表达式的,而其他版本是默认不解析EL表达式.于是把web.xml中使用的2.5版本 ...

  6. 【Lucene4.8教程之三】搜索 2014-06-21 09:53 1532人阅读 评论(0) 收藏

    1.关键类 Lucene的搜索过程中涉及的主要类有以下几个: (1)IndexSearcher:执行search()方法的类 (2)IndexReader:对索引文件进行读操作,并为IndexSear ...

  7. 转载:使用bat命令来快速安装和卸载Service服务

    一般我们在编写完Service服务程序后,都是通过cmd命令提示窗口来安装或卸载服务,但频繁的在cmd窗口中去“拼”文件的路径着实让人“不能忍”.所以,我们需要一钟“更快捷”的方式来进行安装或者卸载操 ...

  8. java之Thread.sleep(long)与object.wait()/object.wait(long)的区别及相关概念梳理(good)

    一.Thread.sleep(long)与object.wait()/object.wait(long)的区别sleep(long)与wait()/wait(long)行为上有些类似,主要区别如下:1 ...

  9. [Angular Directive] Write a Structural Directive in Angular 2

    Structural directives enable you to use an element as a template for creating additional elements. C ...

  10. 用JavaScript和CSS实现“在页面中水平和垂直居中”的时钟

    思路:实现起来最麻烦的事实上是水平居中和垂直居中,当中垂直居中是最麻烦的. 考虑到浏览器兼容性,网上看了一些资料,发如今页面中垂直居中确实没有什么太好的办法. 于是就採用了position:fixed ...