PS:好题。不看题解绝对AC不了。

题解来源:

http://blog.csdn.net/niushuai666/article/details/7176290

http://www.cnblogs.com/wally/archive/2013/04/02/2995846.html

题目大意:

  现在有N个部队和M个任务(M>=N),每个部队完成每个任务有一点的效率,效率越高越好。但是部队已经安排了一定的计划,这时需要我们尽量用最小的变动,使得所有部队效率之和最大。求最小变动的数目和变动后和变动前效率之差。

分析:

  因为我们要变动最小,所以对在原计划中的边要有一些特殊照顾,使得最优匹配时,尽量优先使用原计划的边,这样变化才能是最小的且不会影响原匹配。

  根据这个思想,我们可以把每条边的权值扩大k倍,k要大于n。然后对原计划的边都+1。精华全在这里。我们来详细说明一下。

  全部边都扩大了k倍,而且k比n大,这样,我们求出的最优匹配就是k倍的最大权值,只要除以k就可以得到最大权值。实现原计划的边加1,这样,在每次选择边时,这些变就 有了优势,就会优先选择这些边。假如原计划的h条边被选入了最优匹配中,这样,最优权值就是k倍的最大权值+k(原计划的每条边都+1)。但是k大于n的用意何在呢?我们发现假如原计划的边全部在匹配中,只会增加n,又n<k,所以除以k后不会影响最优匹配的最大权值之和,然后我们对k取余,就正好得到加入的原计划的边的个数。这时,我们只需要用总点数-加入的原计划的点数,就可以求得最小变动数了。

代码:(其实知道上面的题解,根本不用看代码)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=, INF=0x3f3f3f3f;
int Map[N][N],mat1[N],mat2[N];//匹配上的左右集合
int KM(int m,int n)
{
int s[N],t[N],a[N],b[N];
int i,j,k,p,q,ans=;
for(i=;i<m;i++)
{
a[i]=-INF;
for(j=;j<n;j++)
a[i]=Map[i][j]>a[i]?Map[i][j]:a[i];
if(a[i]==-INF) return -;//cannot match
}
memset(b,,sizeof(b));
memset(mat1,-,sizeof(mat1));
memset(mat2,-,sizeof(mat2));
for(i=;i<m;i++)
{
memset(t,-,sizeof(t));
p=q=;
for(s[]=i;p<=q&&mat1[i]<;p++)
{
for(k=s[p],j=;j<n&&mat1[i]<;j++)
{
if(a[k]+b[j]==Map[k][j]&&t[j]<)
{
s[++q]=mat2[j]; t[j]=k;
if(s[q]<)
for(p=j;p>=;j=p)
{
mat2[j]=k=t[j];p=mat1[k]; mat1[k]=j;
}
}
}
}
if(mat1[i]<)
{
i--,p=INF;
for(k=;k<=q;k++)
{
for(j=;j<n;j++)
if(t[j]<&&a[s[k]]+b[j]-Map[s[k]][j]<p)
p=a[s[k]]+b[j]-Map[s[k]][j];
}
for(j=;j<n;j++) b[j]+=t[j]<?:p;
for(k=;k<=q;k++) a[s[k]]-=p;
}
}
for(i=;i<m;i++) ans+=Map[i][mat1[i]];
return ans;
}
int p[N];
int main()
{
//freopen("test.txt","r",stdin);
int n,i,j,m,k,e,t,ans,s;
while(scanf("%d%d",&n,&m)!=EOF)
{
e=n;
for(i=;i<n;i++)
for(j=;j<m;j++){
scanf("%d",&Map[i][j]);
Map[i][j]*=;
}
s=;
for(i=;i<n;i++){
scanf("%d",&p[i]);
p[i]--;
s+=Map[i][p[i]]/;
Map[i][p[i]]++;
}
ans=KM(n,m);
t=ans%;
ans/=;
printf("%d %d\n",n-t,ans-s);
}
return ;
}

hdu2853 Assignment 完美匹配 多校联赛的好题的更多相关文章

  1. ZOJ-3933 Team Formation (二分图最佳完美匹配)

    题目大意:n个人,分为两个阵营.现在要组成由若干支队伍,每支队伍由两个人组成并且这两个人必须来自不同的阵营.同时,每个人都有m个厌恶的对象,并且厌恶是相互的.相互厌恶的人不能组成一支队伍.问最多能组成 ...

  2. UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)

    题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...

  3. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

  4. UVALive 2238 Fixed Partition Memory Management(二分完美匹配)

    题意:计算机中有一些固定大小的内存,内存越大,处理速度越快.对于一个程序,加入不同的内存空间,处理所需时间不同.现给出m个内存空间,n个程序,对于每个程序程序,有k组数据(s,t),分别表示当程序 i ...

  5. UVALive 4043 Ants(二分图完美匹配)

    题意:每个蚁群有自己的食物源(苹果树),已知蚂蚁靠气味辨别行进方向,所以蚁群之间的行动轨迹不能重叠.现在给出坐标系中n个蚁群和n棵果树的坐标,两两配对,实现以上要求.输出的第 i 行表示第 i 个蚁群 ...

  6. POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)

    题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...

  7. bzoj 1059 [ZJOI2007]矩阵游戏(完美匹配)

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2993  Solved: 1451[Submit][Stat ...

  8. codevs 1222 信与信封问题(二分图的完美匹配)

    1222 信与信封问题   题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封. ...

  9. UVa1349 Optimal Bus Route Design(二分图最佳完美匹配)

    UVA - 1349 Optimal Bus Route Design Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...

随机推荐

  1. Tomcat Eclipse Debug出现异常

    1.可能是java类没有及时更新成class文件2.本地程序没有同步到Tommcat服务器里面3.Servlet类里面加了版本号private static final long serialVers ...

  2. 安装 Ubuntu 14.04 之后要做的一些事

    转自:  http://www.cnblogs.com/marcowei/p/3841342.html 安装 ubuntu14.04 之后要做的一些事 前言: 用 ubuntu14.04 也有一段时间 ...

  3. CentOS 7.2 x64 配置SVN服务器

    说明: SVN(subversion)的运行方式有两种: 一种是基于Apache的http.https网页访问形式,还有一种是基于svnserve的独立服务器模式. SVN的数据存储方式也有两种:一种 ...

  4. Linux思维导图之sed、实战习题

    命令解释: ◆sed 2p /etc/passwd第二行打印了两次其余一次 ◆sed-n '2p' /etc/passwd 只打印出第二行 ◆sed-n 1,4p' /etc/passwd 只打印出1 ...

  5. open-ldap服务安装(1)

    LDAP简介 LDAP 代表 轻量级目录访问协议.在我的理解中ldap就是一个数据库. 在LDAP中,目录条目以分层树状结构排序. 传统上,这种结构反映了地理和组织边界,表示国家/地区的条目显示在树的 ...

  6. Hexo系列(二) 配置文件详解

    Hexo 是一款优秀的博客框架,在使用 Hexo 搭建一个属于自己的博客网站后,我们还需要对其进行配置,使得 Hexo 更能满足自己的需求 这里所说的配置文件,是位于站点根目录下的 _config.y ...

  7. PAT 1080. Graduate Admission

    It is said that in 2013, there were about 100 graduate schools ready to proceed over 40,000 applicat ...

  8. Nginx学习总结(2)——Nginx手机版和PC电脑版网站配置

    考虑到网站的在多种设备下的兼容性,有很多网站会有手机版和电脑版两个版本.访问同一个网站URL,当服务端识别出用户使用电脑访问,就打开电脑版的页面,用户如果使用手机访问,则会得到手机版的页面. 1.判断 ...

  9. 只读事务(@Transactional(readOnly = true))的一些概念

    念:从这一点设置的时间点开始(时间点a)到这个事务结束的过程中,其他事务所提交的数据,该事务将看不见!(查询中不会出现别人在时间点a之后提交的数据) 应用场合: 如果你一次执行单条查询语句,则没有必要 ...

  10. CAN在汽车电子中的应用

    http://xuxiaozhao163.blog.163.com/blog/static/3793592200802784146452/ CAN是控制器局域网络(Controller Area Ne ...