【学习笔记】关于最大公约数(gcd)的定理
手动博客搬家: 本文发表于20181004 00:21:28, 原地址https://blog.csdn.net/suncongbo/article/details/82935140
结论1
\[\gcd(x^{a}-1,x^{b}-1)=x^{\gcd(a,b)}-1\]
证明:
采用数学归纳法。
令\(a=kb+p\), 则有\(\gcd(x^{a}-1,x^{b}-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(x^p-1,x^b-1)=\gcd(x^b-1,x^{(a\mod b)}-1)\).
中间一步利用到了如下结论: \((x-1)|(x^k-1)\), 证明直接因式分解: \(x^k-1=(x-1)(\sum^{k-1}_{i=0} x_i)\)
结论2
\[\gcd(Fib(a),Fib(b))=Fib(\gcd(a,b))\]
其中\(Fib(x)\)为Fibonacci数列第\(x\)项。
证明:
首先证明一个结论: \(Fib(a+b)=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
采用数学归纳法: \(b=1, Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a-1)=Fib(a-1)Fib(1)+Fib(a)Fib(2)\)
\(b=2, Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a-1)=Fib(a-1)Fib(2)+Fib(a)Fib(3)\)
对于更大的\(b\), 假设有结论对\(b-1, b-2\)成立,则\(Fib(a+b)=Fib(a+b-1)+Fib(a+b-2)=Fib(a-1)Fib(b-1)+Fib(a)Fib(b)+Fib(a-1)Fib(b-2)+Fib(a)Fib(b-1)=Fib(a-1)(Fib(b-2)+Fib(b-1))+Fib(a)(Fib(b-1)+Fib(b))=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)\)
因此假设成立。
然后考虑如何证明\(\gcd\): 首先\(\gcd(Fib(n),Fib(n-1))=1\) (数学归纳同样可证),然后不妨设\(a>b\), 依然可以数学归纳证明,假设上式对于\(a,b\)成立,则\(\gcd(Fib(a+b),Fib(a))=\gcd(Fib(a-1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=\gcd(Fib(a-1)Fib(b),Fib(a))=\gcd(Fib(b),Fib(a))=Fib(\gcd(a,b))=Fib(\gcd(a+b,a))\).
证毕。
推广: 由于\(f(a+b)=f(a-1)f(b)+f(a)f(b+1)\)对多种能表示成\(f(n)=af(n-1)+bf(n-2), (\gcd(a,b)=1)\)的递推关系式都适用,因此对于此类关系式都有\(\gcd(f(a),f(b))=f(\gcd(a,b))\).
【学习笔记】关于最大公约数(gcd)的定理的更多相关文章
- swift学习笔记 - swift3.0用GCD实现计时器
swift3.0之后,GCD的语法发生了翻天覆地的变化,从过去的c语法变成了点语法,下面是变化之后用GCD实现计时器的方法: 先贴代码: // 定义需要计时的时间 var timeCount = 60 ...
- 学习笔记 - 中国剩余定理&扩展中国剩余定理
中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...
- iOS学习笔记(8)——GCD初探
1. AppDelegate.m #import "AppDelegate.h" #import "ViewController.h" @interface A ...
- poj1265&&2954 [皮克定理 格点多边形]【学习笔记】
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊... Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...
- 【学习笔记】Polya定理
笔者经多番周折终于看懂了\(\text{Burnside}\)定理和\(\text{Polya}\)定理,特来写一篇学习笔记来记录一下. 群定义 定义:群\((G,·)\)是一个集合与一个运算·所定义 ...
- OI数学 简单学习笔记
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 9894 Solved: 4561[Subm ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- OI知识点|NOIP考点|省选考点|教程与学习笔记合集
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...
随机推荐
- [Java]LeetCode57 Insert Interval
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...
- hook 鼠标键盘消息实例分析
1.木马控制及通信方法包含:双管道,port重用.反弹技术.Hook技术,今天重点引用介绍一下hook的使用方法,hook信息后能够将结果发送到hacker邮箱等.实现攻击的目的. 转自:http:/ ...
- Struts 配置文件
web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="htt ...
- Android5.0 Recovery源代码分析与定制(一)【转】
本文转载自:http://blog.csdn.net/morixinguan/article/details/72858346 版权声明:本文为博主原创文章,如有需要,请注明转载地址:http://b ...
- P1850 换教室 概率dp
其实说是概率dp,本质上和dp没什么区别,就是把所有可能转移的情况全枚举一下就行了,不过dp方程确实有点长... ps:这个题的floyed我竟然之前写跪了... 题目: 题目描述 对于刚上大学的牛牛 ...
- ubuntu 12.10 禁用触摸板
1. 打开终端,输入 sudo rmmod psmouse 禁用触摸板,输入 sudo modprobe psmouse 恢复触摸板 2.syndaemon -i 10 -d >/dev/nul ...
- 97. ExtJS之EditorGridPanel afteredit属性
转自:https://zccst.iteye.com/blog/1328869 1. 之前大多用Ext.grid.GridPanel,现在需要可编辑功能,发现比以前稍复杂一些. 就是需要对指定列进行可 ...
- jQuery获取及设置单选框、多选框、文本框
获取一组radio被选中项的值 var item = $("input[@name=items][@checked]").val(); 获取select被选中项的文本 var it ...
- MessageDigest 加密和解密2
package com.drawthink.platform.util; import java.security.MessageDigest; import java.security.NoSuch ...
- ESB报文自动生成工具
为了提高日常工作效率,自己在闲暇时间写了一款工具,功能界面如下图所示: 从ESB文档中复制报文字段.字段类型.报文字段注释,选择生成文件路径并输入文件名: 输入完毕后点击生成按钮,自动生成Contex ...