POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors
题意:最近公共祖先的裸题
思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义。f[i][j]表示i节点的第2j个父亲是多少
这个代码不是我的,转自 邝斌博客
/* ***********************************************
Author :kuangbin
Created Time :2013-9-5 9:45:17
File Name :F:\2013ACM练习\专题学习\LCA\POJ1330_3.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* POJ 1330
* LCA 在线算法
*/
const int MAXN = ;
const int DEG = ; struct Edge
{
int to, next;
}edge[MAXN * ];
int head[MAXN], tot;
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void init()
{
tot = ;
memset(head, -, sizeof(head));
}
int fa[MAXN][DEG];//fa[i][j]表示结点i的第2^j个祖先
int deg[MAXN];//深度数组 void BFS(int root)
{
queue<int>que;
deg[root] = ;
fa[root][] = root;
que.push(root);
while (!que.empty())
{
int tmp = que.front();
que.pop();
for (int i = ; i < DEG; i++)
fa[tmp][i] = fa[fa[tmp][i - ]][i - ];
for (int i = head[tmp]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (v == fa[tmp][])continue;
deg[v] = deg[tmp] + ;
fa[v][] = tmp;
que.push(v);
} }
}
int LCA(int u, int v)
{
if (deg[u] > deg[v])swap(u, v);
int hu = deg[u], hv = deg[v];
int tu = u, tv = v;
for (int det = hv - hu, i = ; det; det >>= , i++)
if (det & )
tv = fa[tv][i];
if (tu == tv)return tu;
for (int i = DEG - ; i >= ; i--)
{
if (fa[tu][i] == fa[tv][i])
continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][];
}
bool flag[MAXN];
int main()
{
freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int n;
int u, v;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
init();
memset(flag, false, sizeof(flag));
for (int i = ; i < n; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = ; i <= n; i++)
if (!flag[i])
{
root = i;
break;
}
BFS(root);
scanf("%d%d", &u, &v);
printf("%d\n", LCA(u, v));
}
return ;
}
POJ 1330 Nearest Common Ancestors 倍增算法的LCA的更多相关文章
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
- POJ 1330 Nearest Common Ancestors (模板题)【LCA】
<题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors 【LCA模板题】
任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000 ...
随机推荐
- 架构思想之CAP原理
由于自己负责后端的设计已经有一段时间,对设计的一些思想和理论有一些理解,但最近被问到什么是CAP时,却一脸懵逼,下来后专门针对CAP架构思想进行了一些专题学习,在这里也将这个概念引入给大家,大家可以有 ...
- 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- reactor模式与java nio
Reactor是由Schmidt, Douglas C提出的一种模式,在高并发server实现中广泛採用. 改模式採用事件驱动方式,当事件出现时,后调用对应的事件处理代码(Event Handl ...
- [Javascript] String Padding in Javascript using padStart and padEnd functions
ES2017 added two new string functions. They are padStart and padEndfunctions. In this lesson, we wil ...
- Atitit.html解析器的选型 jsoup nsoup ,java c# .net 版本号
Atitit.html解析器的选型 jsoup nsoup ,java c# .net 版本号 1. 框架选型的要求 1 1.1. 文档多 1 1.2. 跨平台 1 2. html解析器特性: 1 2 ...
- C++基础之全局变量
C++的水比較深,之前我一直以为C++的全局变量会像其它语言一样,很easy仅仅要在头文件里,定义一个变量就可以,比方以下的test.h: #ifndef _TEST_H #define _TEST_ ...
- vim 插件之NERD tree
NERD tree 这个插件可以用来快速浏览目录结构,打开文件 地址 http://www.vim.org/scripts/script.php?script_id=1658 https://gith ...
- dedecms后台登录,与后台界面去除多于的样式
http://jingyan.baidu.com/article/597035520f4edc8fc00740f7.html
- UI Framework-1: Ash Color Chooser
Ash Color Chooser Overview This document describes how to achieve <input type=”color”> UI in C ...
- Linux 文件系统详解
作者: Paul Brown 译者: LCTT amwps290 这篇教程将帮你快速了解 Linux 文件系统. 早在 1996 年,在真正理解文件系统的结构之前,我就学会了如何在我崭新的 Linux ...