luogu 1351 联合权值
联合权值
题目大意
给你一个图,有\(n-1\)条边,距离均为\(1\),每距离为\(2\)的两个点的联合权值为\(W_u \times W_v\),求联合权值的最大值和联合权值总和。
solution
70pts
这道题稍微看一下就想到可以枚举一个点,然后对于每个点所相连的点到另一个所相连的点的距离一定为\(2\),所以我们就可以暴力枚举这一个点,然后进行加和。这样我们就得到了70分的做法。
// 70pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const int mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,val[200001],maxn=-0x7fffffff,ans,fa[200001];
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return ;
}
void dfs(int x) {
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) {
int k=fa[x];
if(k!=0) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
dfs(v);
}
}
for(int i=head[x]; i; i=e[i].next)
for(int j=head[x]; j; j=e[j].next) {
int k=e[i].to,v=e[j].to;
if(k!=v && k!=fa[x] && v!=fa[x]) {
ans+=((val[k]%mod)*(val[v]%mod))%mod;
ans%=mod;
maxn=max(maxn,val[k]*val[v]);
}
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%d",&val[i]);
dfs_bgn(1,0);
dfs(1);
printf("%d %d",maxn,ans);
return 0;
}
100pts
因为现在没考试,所以思想比较懈怠,就没有相处100pts的做法。
100pts的做法就是加了一步小优化,将我的n方枚举转变为线性。
线性做法是这样的,枚举到一个点,那么它的一个相邻点必定会乘以其他的点,所以这就是一个乘法分配律。
既然这样,我们就好说了。我们求出每个点相邻点的总和,然后再根据乘法分配律对答案进行更新。
那么最大值怎么办呢?最大值的话可以仔细想想,因为最大值就是一个点所相连的最大乘以次大,所以我们再枚举这个点周边点的时候维护一下就行了。
//100pts
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int n;
const long long mod = 10007;
struct edge {
int next,to;
} e[400000];
int head[400001],tot,fa[200001];
long long val[200001],maxn=-0x7fffffff,ans;
void add(int x,int y) {
e[++tot].next = head[x];
head[x] = tot;
e[tot].to = y;
}
void dfs_bgn(int x,int f) {
fa[x]=f;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=f)
dfs_bgn(v,x);
}
return;
}
void dfs(int x) {
long long max1=0,max2=0,sum=0;
for(int i=head[x]; i; i=e[i].next) {
int v=e[i].to;
if(v!=fa[x]) dfs(v);
if(max1<val[v])max2=max1,max1=val[v];
else if(max1==val[v])max2=max1;
else if(max1>val[v] && max2<val[v]) max2=val[v];
sum+=val[v];
}
maxn=max(maxn,max1*max2);
for(int i=head[x];i;i=e[i].next){
int v=e[i].to;
ans=(ans+(val[v]%mod)*(sum-val[v]%mod))%mod;
ans%=mod;
}
}
int main() {
scanf("%d",&n);
for(int i=1; i<n; i++) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1; i<=n; i++)scanf("%lld",&val[i]),val[i]%=mod;
dfs_bgn(1,0);
dfs(1);
printf("%lld %lld",maxn,ans);
return 0;
}
luogu 1351 联合权值的更多相关文章
- luogu P1351 联合权值
题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...
- [NOIp2014] luogu P1351 联合权值
哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi,每条边的长度均为 111 ...
- Luogu P1351 联合权值 题解
这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...
- 【luogu P1351 联合权值】 题解
题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题 ...
- 洛谷 1351 联合权值——树形dp
题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...
- Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...
- [Luogu 1351] NOIP2014 联合权值
[Luogu 1351] NOIP2014 联合权值 存图,对于每一个点 \(u\),遍历它的所有邻接点.以 \(u\) 为中转点的点对中,\((x,y)\) 的联合权值 \(w_x \cdot w_ ...
- 【NOIP2014提高组】联合权值
https://www.luogu.org/problem/show?pid=1351 既然是一棵树,就先转化成有根树.有根树上距离为2的点对,路径可能长下面这样: 枚举路径上的中间点X. 第一种情况 ...
- 洛谷——P1351 联合权值
https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...
随机推荐
- Java Servlet 配置
图片太大,可以右键另存再查看,也可以鼠标点击拖置一下,用浏览器单独承载放大查看.
- 错误:com.android.builder.packaging.DuplicateFileException: Duplicate files copied
File2: C:\Users\guoxw\.gradle\caches\modules-2\files-2.1\org.jsoup\jsoup\1.10.3\b842f960942503cf1abb ...
- Android 的永久登陆 与注销登陆
一.永久登陆 sharedprefrence 存储 userID 以及 password private String FILE = "saveUserNamePwd";//用于 ...
- DB2报“数据库日志已满”问题解决
用控制中心直接改会比较容易一点,在数据库名称上点右键-->配置-->日志-->日志文件大小.主日志文件数.辅助日志文件数改大一点. 也可用命令行db2cmd db2 update d ...
- C语言宏定义#define用法
#define是C语言中提供的宏定义命令,其主要目的是为程序员在编程时提供一定的方便,并能在一定程度上提高程序的运行效率,但学生在学习时往往不能 理解该命令的本质,总是在此处产生一些困惑,在编程时误用 ...
- 脚本_统计固定时间段服务器的访问量.sh
#!bin/bash#功能:统计 1:30 到 4:30 所有访问 apache 服务器的请求有多少个#作者:liusingbon#awk 使用-F 选项指定文件内容的分隔符是/或者:#条件判断$7: ...
- Qwiklab'实验-Hadoop, IoT, IAM, Key Management'
title: AWS之Qwiklab subtitle: 1. Qwiklab'实验-Hadoop, IoT, IAM, Key Management Service' date: 2018-09-1 ...
- d3基础图形模板笔记
散点图(scatter plot): http://bl.ocks.org/weiglemc/6185069 雷达图(radar): http://xgfe.github.io/uploads/che ...
- HDU 1757 A Simple Math Problem( 矩阵快速幂 )
<font color = red , size = '4'>下列图表转载自 efreet 链接:传送门 题意:给出递推关系,求 f(k) % m 的值, 思路: 因为 k<2 * ...
- django-10-中间件和上下文管理器
<<<中间件的引入>>> 用户<->中间件<->url->视图 在app目录里面 middleware.py (1)中间件就是一个 ...