Problem description

There are n employees in Alternative Cake Manufacturing (ACM). They are now voting on some very important question and the leading world media are trying to predict the outcome of the vote.

Each of the employees belongs to one of two fractions: depublicans or remocrats, and these two fractions have opposite opinions on what should be the outcome of the vote. The voting procedure is rather complicated:

  1. Each of n employees makes a statement. They make statements one by one starting from employees 1 and finishing with employee n. If at the moment when it's time for the i-th employee to make a statement he no longer has the right to vote, he just skips his turn (and no longer takes part in this voting).
  2. When employee makes a statement, he can do nothing or declare that one of the other employees no longer has a right to vote. It's allowed to deny from voting people who already made the statement or people who are only waiting to do so. If someone is denied from voting he no longer participates in the voting till the very end.
  3. When all employees are done with their statements, the procedure repeats: again, each employees starting from 1 and finishing with n who are still eligible to vote make their statements.
  4. The process repeats until there is only one employee eligible to vote remaining and he determines the outcome of the whole voting. Of course, he votes for the decision suitable for his fraction.

You know the order employees are going to vote and that they behave optimal (and they also know the order and who belongs to which fraction). Predict the outcome of the vote.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of employees.

The next line contains n characters. The i-th character is 'D' if the i-th employee is from depublicans fraction or 'R' if he is from remocrats.

Output

Print 'D' if the outcome of the vote will be suitable for depublicans and 'R' if remocrats will win.

Examples

Input

5
DDRRR

Output

D

Input

6
DDRRRR

Output

R

Note

Consider one of the voting scenarios for the first sample:

  1. Employee 1 denies employee 5 to vote.
  2. Employee 2 denies employee 3 to vote.
  3. Employee 3 has no right to vote and skips his turn (he was denied by employee 2).
  4. Employee 4 denies employee 2 to vote.
  5. Employee 5 has no right to vote and skips his turn (he was denied by employee 1).
  6. Employee 1 denies employee 4.
  7. Only employee 1 now has the right to vote so the voting ends with the victory of depublicans.

解题思路:仔细读一下题目,还是挺简单的。就是有两个门派D和R,给定一个字符串(只由D和R组成),只要位置靠前的人就可以将后面的对手deny掉,当轮到这个对手时,由于已被前面的人deny掉,所以此人再也没有deny他人的权利,直接跳过。不断循环,后面的人也可以deny前面还有选择权利的人,怎么实现呢?我们用队列来维护它们的位置(下标),当前面的人deny后面的对手后,此时就弹出两个队的队首元素(表示位置序号都已失效),但deny别人的人还有选择的权利,也可能会被后面的对手deny掉,于是只需将其位置序号加上n后入自己的队列中(满足位置序号比后面大,即后面的人可以deny掉"前面"还有选择权的对手)。最终,哪个队列不为空,谁就拥有vote的权利。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
int n;char s[];
queue<int> d,r;
int main(){
cin>>n;getchar();
cin>>s;
for(int i=;i<n;++i){
if(s[i]=='D')d.push(i);
else r.push(i);
}
while(!d.empty()&&!r.empty()){
int dd=d.front(),rr=r.front();
if(dd<rr){d.pop();r.pop();d.push(n+dd);}
else{d.pop();r.pop();r.push(n+rr);}
}
if(!d.empty())cout<<'D'<<endl;
else cout<<'R'<<endl;
return ;
}

A - Voting(queue)的更多相关文章

  1. Nodejs事件引擎libuv源码剖析之:高效队列(queue)的实现

     声明:本文为原创博文,转载请注明出处. 在libuv中,有一个只使用简单的宏封装成的高效队列(queue),现在我们就来看一下它是怎么实现的. 首先,看一下queue中最基本的几个宏: typede ...

  2. Berkeley DB的数据存储结构——哈希表(Hash Table)、B树(BTree)、队列(Queue)、记录号(Recno)

    Berkeley DB的数据存储结构 BDB支持四种数据存储结构及相应算法,官方称为访问方法(Access Method),分别是哈希表(Hash Table).B树(BTree).队列(Queue) ...

  3. [置顶] ※数据结构※→☆线性表结构(queue)☆============队列 顺序存储结构(queue sequence)(八)

    队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表.进行插入操作的端称为队尾,进行删除操作的 ...

  4. [置顶] ※数据结构※→☆线性表结构(queue)☆============循环队列 顺序存储结构(queue circular sequence)(十)

    循环队列 为充分利用向量空间,克服"假溢出"现象的方法是:将向量空间想象为一个首尾相接的圆环,并称这种向量为循环向量.存储在其中的队列称为循环队列(Circular Queue). ...

  5. [置顶] ※数据结构※→☆线性表结构(queue)☆============优先队列 链式存储结构(queue priority list)(十二)

    优先队列(priority queue) 普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除.在优先队列中,元素被赋予优先级.当访问元素时,具有最高优先级的元素最先删除.优先队列具有 ...

  6. PHP实现队列(Queue)数据结构

    队列(Queue),是一种特殊的先进先出线性表,其只能在前端进行删除操作(一般称为出队),在后端进行插入操作(一般称为入队).进行删除操作的端称为队头,进行插入操作的端称为队尾.队列,是按照先进先出或 ...

  7. C# 堆栈(Stack)和队列(Queue)

    一.什么是堆?(Heap)      堆是无序的,是一片不连续的内存域,由用户自己来控制和释放,如果用户自己不释放的话,当内存达到一定的特定值时,通过垃圾回收器(GC)来回收.      是程序运行期 ...

  8. python 数据结构 队列(queue)

    如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10293817.html 欢迎关注小婷儿的博客: 有问题请在博客下留言或加作者微信:t ...

  9. C# 队列(Queue)和 堆栈(Stack)

    C# 队列(Queue)和 堆栈(Stack) C# 队列(Queue) 队列(Queue)代表了一个先进先出的对象集合.当您需要对各项进行先进先出的访问时,则使用队列.当您在列表中添加一项,称为入队 ...

随机推荐

  1. demo__webpack

    webpack 中使用的包更新非常频繁,使用方式可能很快就会改变,解决方式 看webapck文档 和 包的使用文档 看包的源码 其他... 环境 win10 + webstorm 2019.1.3 + ...

  2. Python 内置函数 day4

    import random s = 'abczfg' st= {3,4,9,1,8} print(dir(random))#打印模块内的方法,输出模块/变量可以调用的方法 print(dir(s))# ...

  3. Python编码格式导致的csv读取错误

    Python编码格式导致的csv读取错误(pandas.read_csv) 本文记录python小白我今天遇到的这两个问题(csv.reader和pandas.csv_read): pandas模块“ ...

  4. git对vue项目进行版本管理

    生成本地仓库 步骤一:git init 步骤二:git add * 步骤三:git commit -m 'init team' 创建远程仓库 new responstory 复制关联代码的命令 将本地 ...

  5. java的四舍五入及取整

    四舍五入用 Math.round(double a): 向上取整用 Math.ceil(double a): 向下取整用 Math.floor(double a):

  6. seminar information (Email template)

      The following is an email example of seminar information   **************** Dear all, It is a plea ...

  7. node.js 中的package.json文件怎么创建?

    最近在用webstorm和nodejs做一些东西,老是各种混乱,今天上午创建一个新的项目,结果发现,npm init之后,并没有出现package.json,并没有太明确他的功能的小姑娘表示十分的惊慌 ...

  8. vue中对象属性改变视图不更新问题

    常规情况下我们在vue实例的data中设置响应数据.但当数据为对象,我们增加或删除对象属性值时,视图并不触发更新,如何解决这个问题呢? let vm = new Vue{ el: '#app', da ...

  9. 洛谷 P1521 求逆序对

    题目描述 我们说(i,j)是a1,a2,…,aN的一个逆序对当且仅当i<j且ai>a j.例如2,4,1,3,5的逆序对有3个,分别为(1,3),(2,3),(2,4).现在已知N和K,求 ...

  10. sqlServer杂计

    In与Exists的区别 这两个函数是差不多的,但由于优化方案不同,通常NOT Exists要比NOT IN要快,因为NOT EXISTS可以使用结合算法二NOT IN就不行了,而EXISTS则不如I ...