【Uva 1543】Telescope
【Link】:
【Description】
给你一个圆和圆周上的n(3≤n≤40)个不同点。请选择其中的m(3≤m≤n)个,按照在圆 周上的顺序连成一个m边形,使得它的面积最大。
【Solution】
DP;
设f[i][j][k]表示在第i到第j个点之间一定选择了i和j的条件下选择了k个点组成的多边形的最大面积;
这样表示状态;在增加一个点的时候;
只要算i..j和新加的那个点组成的三角形面积,然后把这个三角形的面积加上去就好了;
逆推的话;
f[i][j][k] = f[i][l][k-1] + area(i,l,j)
l∈[i..j-1];
当k<3的时候,f[i][j][k]=0;
其中area(i,l,j)表示点i,l,j组成的三角形的面积;
面积可以用海伦公式搞;
其中两点之间的弦长为2∗sin(a2)
则用题中给的东西表示就为
2∗sin(|p[i]−p[j]|∗π)
这样就能求出三角形的三边了;
【NumberOf WA】
0
【Reviw】
状态表示得清晰一点,DP就不难写了;
【Code】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x+1)
#define rd(x) scanf("%lf",&x)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 40;
const int INF = 0x3f3f3f3f;
int n,m;
double p[N+10],f[N+10][N+10][N+10];
double dis(int i,int j){
double tp = abs(p[j]-p[i]);
if (tp>0.5) tp = 1 - tp;
return 2*sin(tp*pi);
}
double area(int i,int j,int k){
double a = dis(i,j),b = dis(i,k),c = dis(j,k);
double temp = (a+b+c)/2.0;
return sqrt(temp*(temp-a)*(temp-b)*(temp-c));
}
double dfs(int l,int r,int num){
if (f[l][r][num]>=0) return f[l][r][num];
if (num < 3) return 0;
double temp = 0;
rep1(i,l,r-1)
temp = max(temp,dfs(l,i,num-1) + area(l,i,r));
return f[l][r][num] = temp;
}
int main(){
//Open();
//Close();
while (~ri(n)){
ri(m);
if (n == 0 && m == 0) break;
rep1(i,1,n) rd(p[i]);
rep1(i,1,n)
rep1(j,1,n)
rep1(k,1,n)
f[i][j][k] = -1;
double ans = 0;
rep1(i,1,n)
rep1(j,i+1,n)
ans = max(ans,dfs(i,j,m));
printf("%.6f\n",ans);
}
return 0;
}
【Uva 1543】Telescope的更多相关文章
- 【巧妙算法系列】【Uva 11464】 - Even Parity 偶数矩阵
偶数矩阵(Even Parity, UVa 11464) 给你一个n×n的01矩阵(每个元素非0即1),你的任务是把尽量少的0变成1,使得每个元素的上.下.左.右的元素(如果存在的话)之和均为偶数.比 ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【UVa 10881】Piotr's Ants
Piotr's Ants Porsition:Uva 10881 白书P9 中文改编题:[T^T][FJUT]第二届新生赛真S题地震了 "One thing is for certain: ...
- 【UVa 116】Unidirectional TSP
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVa 1347】Tour
[Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【UVA 437】The Tower of Babylon(记忆化搜索写法)
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【uva 1025】A Spy in the Metro
[题目链接]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...
- 【Uva 11584】Partitioning by Palindromes
[Link]:https://cn.vjudge.net/contest/170078#problem/G [Description] 给你若干个只由小写字母组成的字符串; 问你,这个字符串,最少能由 ...
- 【Uva 11400】Lighting System Design
[Link]: [Description] 你要构建一个供电系统; 给你n种灯泡来构建这么一个系统; 每种灯泡有4个参数 1.灯泡的工作电压 2.灯泡的所需的电源的花费(只要买一个电源就能供这种灯泡的 ...
随机推荐
- eBay起诉指控亚马逊利用非法手段挖走其卖家
[摘要]eBay在诉状中称,亚马逊的代表滥用eBay的内部电子邮件系统联系卖家,这违反了市场政策. 腾讯科技讯 10月18日消息,据外媒报道,拍卖网站eBay对亚马逊提起诉讼,指控这家美国零售巨头利用 ...
- js或css指定元素点击时内容不可被选中
一.css3中可以使用"user-select"属性: body{ -webkit-user-select:none;/*谷歌 /Chrome*/ -moz-user-select ...
- 【Henu ACM Round#18 F】Arthur and Walls
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 考虑,为什么一个连通块里面的空格没有变成一个矩形? 如果不是形成矩形的话. 肯定是因为某个2x2的单张方形里面. 只有一个角是墙.其 ...
- script指定src后内部代码无效
/********** 无效 ***************/ <script type="text/javascript" src=""> fun ...
- placement new和delete
注意,我们无法改变new和delete操作符. 但是我们可以重载来里面的operator new 和 operator delete 方法,这个方法是被new操作符调用的,调用之后获得地址,会继续用构 ...
- 从C10K到C10M高性能网络的探索与实践
在高性能网络的场景下,C10K是一个具有里程碑意义的场景,15年前它给互联网领域带来了非常大的挑战.发展至今,我们已经进入C10M的场景进行网络性能优化. 这期间有怎样的发展和趋势?环绕着各类指标分别 ...
- Zookeeper的单节点集群详细启动步骤
这个很简单,见如下博客. 1 week110的zookeeper的安装 + zookeeper提供少量数据的存储 [hadoop@weekend110 zookeeper-3.4.6]$ pwd/ho ...
- JS — 对象的基本操作
JS面向对象系列教程 — 对象的基本操作 面向对象概述  面向对象(Object Oriented)简称OO,它是一种编程思维,用于指导我们如何应对各种复杂的开发场景. 这里说的对象(Object) ...
- 为什么linux驱动中变量或者函数都用static修饰?(知乎问题)
static定义的全局变量 或函数也只能作用于当前的文件. 世界硬件厂商太多,定义static为了防止变量或 函数 重名,定义成static, 就算不同硬件驱动中的 变更 或函数重名了也没关系 .
- 【python 设计模式】单例模式
单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. 比如,某 ...