BZOJ 1855 股票交易 - 单调队列优化dp
题目分析:
\(f[i][j]\)表示第i天,手中拥有j份股票的最优利润。
- 如果不买也不卖,那么$$f[i][j] = f[i-1][j]$$
- 如果买入,那么$$f[i][j] = max{f[i - w - 1][k] - A_p*(j - k)} (j - as + 1 \le k \le j)$$由于是从小的更新大的,所以顺序
- 如果卖出,那么$$f[i][j] = max{f[i - w - 1][k] + B_p*(k - j)} (j \le k \le j + bs - 1)$$由于是从大更新小的,所以倒序
现在已经得到了一个\(n^3\)转移的方法,现在来考虑如何优化成\(n^2\)。
形如这样的方程,具有决策单调性,可以使用单调队列优化。将上面推得的后两个方程整理得
\]
\]
中间括号前的用单调队列维护单调性,每次插入时更新决策。
code
#include<bits/stdc++.h>
using namespace std;
const int N = 2005, OO = 0x3f3f3f3f;
int n, w, maxp;
int f[N][N], ans;
typedef pair<int, int> P;
P que[N];
struct node{
int ap, bp, as, bs;
}d[N];
int main(){
scanf("%d%d%d", &n, &maxp, &w);
for(register int i = 1; i <= n; i++)
scanf("%d%d%d%d", &d[i].ap, &d[i].bp, &d[i].as, &d[i].bs);
memset(f, -OO, sizeof f);
for(register int i = 1; i <= n; i++){
for(register int j = 0; j <= d[i].as; j++) f[i][j] = -d[i].ap * j; //初始化为只买股票
for(register int j = 0; j <= maxp; j++) f[i][j] = max(f[i][j], f[i - 1][j]);
if(i - w - 1 >= 0){
register int head = 1, tail = 0;
for(register int j = 0; j <= maxp; j++){ //从小的转移,顺序
while(head <= tail && que[head].first < j - d[i].as) head++;
while(head <= tail && que[tail].second <= f[i - w - 1][j] + d[i].ap * j) tail--;
que[++tail] = P(j, f[i - w - 1][j] + d[i].ap * j);
if(head <= tail) f[i][j] = max(f[i][j], que[head].second - d[i].ap * j);
}
head = 1, tail = 0;
// for(int j = 0; j <= maxp; j++){ //错误
for(register int j = maxp; j >= 0; j--){ //从大的转移,倒序
while(head <= tail && que[head].first > j + d[i].bs) head++;
while(head <= tail && que[tail].second <= f[i - w - 1][j] + d[i].bp * j) tail--;
que[++tail] = P(j, f[i - w - 1][j] + d[i].bp * j);
if(head <= tail) f[i][j] = max(f[i][j], que[head].second - d[i].bp * j);
}
}
}
printf("%d", f[n][0]);
return 0;
}
BZOJ 1855 股票交易 - 单调队列优化dp的更多相关文章
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- SCOI 股票交易 单调队列优化dp
这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)
传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...
- BZOJ1855 股票交易 单调队列优化 DP
描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as, 某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...
- 股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
随机推荐
- Docker---(8)Docker启动Redis后访问不了
原文:Docker---(8)Docker启动Redis后访问不了 版权声明:欢迎转载,请标明出处,如有问题,欢迎指正!谢谢!微信:w1186355422 https://blog.csdn.net/ ...
- 00092_字符输出流Writer
1.字符输出流Writer (1)既然有专门用于读取字符的流对象,那么肯定也有写的字符流对象: (2)查阅API,发现有一个Writer类,Writer是写入字符流的抽象类.其中描述了相应的写的动作. ...
- POJ 1064 Cable master 浮点数二分
http://poj.org/problem?id=1064 题目大意: 有N条绳子,他们的长度分别为Li,如果从它们中切割出k条长度相同的绳子的话,这K条绳子每条能有多长? 思路: 二分,设答案为m ...
- Surging 分布式微服务框架使用入门
原文:Surging 分布式微服务框架使用入门 前言 本文非 Surging 官方教程,只是自己学习的总结.如有哪里不对,还望指正. 我对 surging 的看法 我目前所在的公司采用架构就是类似与S ...
- GO语言学习(十一)Go 语言循环语句
Go 语言提供了以下几种类型循环处理语句: 循环类型 描述 for 循环 重复执行语句块 循环嵌套 在 for 循环中嵌套一个或多个 for 循环 语法 Go语言的For循环有3中形式,只有其中的一种 ...
- Dynamic device virtualization
A system and method for providing dynamic device virtualization is herein disclosed. According to on ...
- Microsoft Bot Framework 链接至微信公共号
如何将 Microsoft Bot Framework 链接至微信公共号 说到 Microsoft Bot Framework 其实微软发布了已经有一段时间了,有很多朋友可能还不太了解,微软Bot ...
- 《你不知道的JavaScript(上)》笔记——let和const
笔记摘自:<你不知道的JavaScript(上)>第3章 函数作用域和块作用域 let 1.let 关键字可以将变量绑定到所在的任意作用域中 2.let 为其声明的变量隐式地劫持了所在的块 ...
- 【Codeforces Round #440 (Div. 2) C】 Maximum splitting
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定用尽量多的4最好. 然后对4取模的结果 为0,1,2,3分类讨论即可 [代码] #include <bits/stdc++ ...
- sum()函数——MATLAB
a=sum(A) %列求和 b=sum(A,2) %行求和 c=sum(A(:)) %矩阵求和 假定A为一个矩阵: sum(A)以矩阵A的每一列为对象,对一列内的数字求和. sum(A,2)以矩阵A ...