Problem Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed
and the process is repeated. This is continued as long as necessary to obtain a single digit.



For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.



The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

Input

The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).

Output

Output n^n's digital root on a separate line of the output.

Sample Input

2
4
0

Sample Output

4
4
#include<stdio.h>
#include<string.h>
int main()
{
int n;
while(~scanf("%d",&n),n)
{
int s=1;
for(int i=0;i<n;i++)
{
s=s*n%9; //事实上不难发现对9取余更简便。不解释为什么,仅仅能说这是一种规律 }
if(s==0)
printf("9\n");
else
printf("%d\n",s);<pre name="code" class="cpp">

}return 0;}

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int sum_dig(int n)
{
int m,sum=0;
while(n)
{
m=n%10;
sum+=m;
n/=10;
}
return sum;
}
int main()
{
int n;
while(~scanf("%d",&n),n)
{
int s=1;
for(int i=0;i<n;i++)
{
s=n*sum_dig(s);
}
while(s>9)
{
s=sum_dig(s);
}
printf("%d\n",s);
}
return 0;
}

HDoj-1163- Digital Roots的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  2. HDU 1163 Eddy's digital Roots

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  3. Digital Roots 1013

    Digital Roots 时间限制(普通/Java):1000MS/3000MS          运行内存限制:65536KByte总提交:456            测试通过:162 描述 T ...

  4. Eddy's digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  5. Digital Roots 分类: HDU 2015-06-19 22:56 13人阅读 评论(0) 收藏

    Digital Roots Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...

  6. ACM——Digital Roots

    http://acm.njupt.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1028 Digital Roots 时间 ...

  7. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. HDU1163 Eddy&#39;s digital Roots【九剩余定理】

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU 1013 Digital Roots(字符串)

    Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...

  10. HDU 1013.Digital Roots【模拟或数论】【8月16】

    Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...

随机推荐

  1. windows10系统window键失灵,没有反应

    今天键盘的的Window键(win键)按了没反应,某度一圈全是它的垃圾营销号文章,没卵用..最后在微软官方社区支持找到解决方案.也建议大家遇到系统问题到微软社区去寻求帮助,毕竟人家是专业. 解决办法 ...

  2. 03011_预处理对象executeUpdate方法(实现数据库的增、删、改)

    1.概述 (1)通过预处理对象的executeUpdate方法,完成记录的insert\update\delete语句的执行: (2)操作格式统一如下: ①注册驱动: ②获取连接: ③获取预处理对象: ...

  3. 玩转阿里云server——安装WebserverTomcat7

    1. 以root用户身份登录阿里云server 2. 使用apt-get install安装Tomcat7 sudo apt-get install tomcat7 3.安装后.Tomcat在启动时报 ...

  4. js--27门面模式

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  5. [BZOJ1672][Usaco2005 Dec]Cleaning Shifts 清理牛棚 线段树优化DP

    链接 题意:给你一些区间,每个区间都有一个花费,求覆盖区间 \([S,T]\) 的最小花费 题解 先将区间排序 设 \(f[i]\) 表示决策到第 \(i\) 个区间,覆盖满 \(S\dots R[i ...

  6. sqlserver存储过程实现多表分页

    if @PageIndex = 1 begin if @strWhere != ’’ set @strSQL = ’select top ’ + str(@PageSize) +’ ’+@strGet ...

  7. 项目列表dl、dt、dd使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. NPOI根据列索引获取列名

    public static string ConvertColumnIndexToColumnName(int index) { index = index + ; ; ]; ; ) { int mo ...

  9. 初学WCF需要注意的地方

    1.WCF的元数据发布有两种方式: a.HTTP-GET方式发布数据:让客户端使用HTTP-GET方式来获取数据是比较常见的方式.所谓HTTP—GET方式,是指当客户端发送一个HTTP-GET请求时, ...

  10. android:一个Open键引发的问题!!

    1.问题简单介绍 首先描写叙述一下问题.当我们安装完APP的时候,界面会显示两个button,一个完毕键,一个Open键,点击Open键之后.进入应用.此时.我们点击HOME键.程序将会后台.然后再点 ...