洛谷 P1045 麦森数 (快速幂+高精度+算位数骚操作)
这道题太精彩了!
我一开始想直接一波暴力算,然后叫上去只有50分,50分超时
然后我改成万位制提高运算效率,还是只有50分
然后我丧心病狂开long long用10的10次方作为一位,也就是100亿进制
去做,然后交上去多过了一个点,60分
附上丧心病狂的代码
#include<cstdio>
#include<cctype>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 1123456 / 10;
const ll base = 1e10;
ll a[MAXN];
int len, n;
void cal()
{
_for(i, 1, len) a[i] <<= 1;
_for(i, 1, len)
{
a[i+1] += a[i] / base;
a[i] %= base;
}
if(a[len+1])
{
len++;
a[len+1] += a[len] / base;
a[len] %= base;
}
}
int main()
{
scanf("%d", &n);
len = 1; a[1] = 2;
REP(i, 1, n) cal();
int p = 1;
a[p] -= 1;
while(a[p] < 0)
{
a[p + 1]--;
a[p] += base;
p++;
}
if(a[len] == 0) len--;
ll t = a[len], num = 0;
while(t) t /= 10, num++;
printf("%d\n", len * 10 - 10 + num);
for(int i = 50, t = 0; i >= 1; i--, t++)
{
if(t == 5) puts(""), t = 0;
printf("%010lld", a[i]);
}
return 0;
}
然后我最后还是看了题解
然后看到算位数真的是给折服的
还有这种操作???
由于10的x次方的位数是x+1
然后可以把2的p次方转化成类似10的x次方来算位数
然后这个时候就用到了log
一波骚操作可以得出位数就是p * lg(2) + 1
牛逼!
然后算前500位。
我竟然没看出这是个快速幂??????
用高精度做快速幂还是头一次。
不过稍微改一下就好了。
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 1123;
struct bignum
{
ll s[MAXN]; int len;
bignum() { memset(s, 0, sizeof(s)); len = 1; }
};
bignum operator * (const bignum& a, const bignum& b)
{
bignum c;
c.len = min(a.len + b.len - 1 , 500);
_for(i, 1, a.len)
_for(j, 1, b.len)
{
c.s[i+j-1] += a.s[i] * b.s[j];
c.s[i+j] += c.s[i+j-1] / 10;
c.s[i+j-1] %= 10;
}
if(c.s[c.len+1] && c.len < 500) c.len++;
return c;
}
int main()
{
int b;
scanf("%d", &b);
printf("%d\n", (int)(b * log10(2)+ 1));
bignum res; res.s[1] = 1;
bignum a; a.s[1] = 2;
while(b)
{
if(b & 1) res = res * a;
b >>= 1;
a = a * a;
}
res.s[1] -= 1;
for(int i = 500; i >= 1; i--)
{
if(i != 500 && i % 50 == 0) puts(""); //这个写法很简便
printf("%d", res.s[i]);
}
puts("");
return 0;
}
洛谷 P1045 麦森数 (快速幂+高精度+算位数骚操作)的更多相关文章
- 洛谷 P1045 麦森数
题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...
- 洛谷P1045 麦森数
题目描述 形如2^{P}-12 P −1的素数称为麦森数,这时PP一定也是个素数.但反过来不一定,即如果PP是个素数,2^{P}-12 P −1不一定也是素数.到1998年底,人们已找 ...
- NOIP2003 普及组 洛谷P1045 麦森数 (快速幂+高精度)
有两个问题:求位数和求后500位的数. 求位数:最后减去1对答案的位数是不影响的,就是求2p的位数,直接有公式log10(2)*p+1; 求后500位的数:容易想到快速幂和高精度: 1 #includ ...
- P1045麦森数
P1045麦森数 #include<iostream> #include <cmath> #include <cstring> const int maxn = 1 ...
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- 洛谷试炼场-简单数学问题-P1045 麦森数-高精度快速幂
洛谷试炼场-简单数学问题 B--P1045 麦森数 Description 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果PP是个素数,2^P-1 不一定也是素数.到19 ...
- 【题解】[P1045] 麦森数
题目 题目描述 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1 不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...
- 洛谷P1226 【模板】快速幂||取余运算
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...
- 洛谷P1313 计算系数【快速幂+dp】
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
随机推荐
- centos 7 防火墙配置
centos 7里的防火墙使用的是firewall. 之前问过一个运维大牛,selinux的位置有点尴尬,说他们在工作中一般都会在第一时间关闭掉.我记得当时自己假设网站的时候就被这个坑了大半晚上.这个 ...
- linux防火墙查看状态firewall、iptable
一.iptables防火墙1.基本操作 # 查看防火墙状态 service iptables status # 停止防火墙 service iptables stop # 启动防火墙 service ...
- [置顶]
智能家居开源项目 The open Home Automation Bus (openHAB)
================================================================================ 2014-05-19 论文的事情太多, ...
- POJ 3122 Pie( 二分搜索 )
链接:传送门 题意:一个小朋友开生日派对邀请了 F 个朋友,排队上有 N 个 底面半径为 ri ,高度为 1 的派,这 F 个朋友非常不友好,非得"平分"这些派,每个人都不想拿到若 ...
- 51nod-字符串连接
输入n个字符串s[i],你要把他们按某个顺序连接起来,使得字典序最小. (1 <= n <= 100) (每个字符串长度 <= 100) (字符串只包含小写字母) Input 第一行 ...
- ajax异步请求获取数据,实现滚动数字的效果。
BackgroundPositionAnimate.js下载 需要导入的js: <script type="text/javascript" src="js/jqu ...
- 洛谷 P1029 最大公约数和最小公倍数问题
有两种做法 一种是gcd与lcm相乘后就是两个数的乘积,枚举第一个数,算出第二数,看最大公约数是不是题目给的. 第二种就lcm/gcd的答案为两个互质的数相乘.然后就枚举有多少组互质的数相乘等于lcm ...
- 【BZOJ 1297】[SCOI2009]迷路
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如果点与点之间的距离都是1的话. 那么T次方之后的矩阵上a[1][n]就是所求答案了. 但是这一题的边权可能会大于1 但最多为10 ...
- ZOJ 3288 Domination
D - Domination Time Limit:8000MS Memory Limit:131072KB 64bit IO Format:%lld & %llu Descr ...
- 【LDA】动手实现LDA
这段时间对LDA比較感兴趣,尝试在工作中使用它.平时做想法的高速验证,都用的是"GibbsLDA++-0.2",一个c实现版本号的LDA. 这两天用c++ stl自己写了一个单机版 ...