caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)
我一开始想的是前i个区间的最大值
显然对于当前的区间,有不选和选两种情况
如果不选的话,就继承f[i-1]
如果选的话,找离当前区间最近的区间取最优
f[i] = max(f[i-1, f[j] + a[i].v()) j为i前面区间中能取得离i最近的区间
那么显然这里涉及到f[i]的时候取的最后一个区间是什么,才能比较
那么就要额外开一个last数组来记录
最后输出f[n]
这样写很麻烦,但是我还是强行写出然后还AC了
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 1123;
int f[MAXN], last[MAXN], n;
struct node
{
int l, r;
int v() { return r - l + 1; }
bool operator < (const node& rhs) const
{
return r < rhs.r || (r == rhs.r && l < rhs.l);
}
}a[MAXN];
int main()
{
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d%d", &a[i].l, &a[i].r);
sort(a + 1, a + n + 1);
f[1] = a[1].v();
last[1] = a[1].r;
REP(i, 2, n + 1)
{
if(a[i].v() > f[i-1])
{
f[i] = a[i].v();
last[i] = a[i].r;
}
else
{ f[i] = f[i-1];
last[i] = last[i-1];
}
for(int j = i - 1; j >= 1; j--)
if(last[j] < a[i].l)
{
if(f[i] < f[j] + a[i].v())
{
f[i] = f[j] + a[i].v();
last[i] = a[i].r;
}
break;
}
}
printf("%d\n", f[n]);
return 0;
}
然后我就突然想到
如果我们换一下状态,设f[i]为以i为结尾的区间的最大值,也就是说i区间必须要取
那么这个时候岂不是f[i]的最后一个区间就是a[i],不就可以省去一个last数组了吗
同时答案不是f[n],而是f数组里面的最大值,因为答案不一定以n为结尾。
然后就写了,代码大大简化,爽!
所以有时候还是要想一个合适的状态,可以大大简化程序和思维量
最后其实按照题目可以设置数据n=1,这个时候我的程序会输出0,会错。
但是数据里面没有这个坑……有的话特判一下就好了
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 1123;
int f[MAXN], n;
struct node
{
int l, r;
int v() { return r - l + 1; }
bool operator < (const node& rhs) const
{
return r < rhs.r || (r == rhs.r && l < rhs.l); //对于这道题而言,按照左端
} //点和右端点排序都是对的
}a[MAXN];
int main()
{
scanf("%d", &n);
REP(i, 1, n + 1) scanf("%d%d", &a[i].l, &a[i].r);
sort(a + 1, a + n + 1);
int ans = 0;
REP(i, 1, n + 1)
{
f[i] = a[i].v(); //这句话不能省,当前区间先取了再说
REP(j, 1, i)
if(a[j].r < a[i].l)
f[i] = max(f[i], f[j] + a[i].v());
ans = max(ans, f[i]);
}
printf("%d\n", ans);
return 0;
}
caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)的更多相关文章
- caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)
我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...
- caioj 1086 动态规划入门(非常规DP10:进攻策略)
一开始看到题目感觉很难 然后看到题解感觉这题贼简单,我好像想复杂了 就算出每一行最少的资源(完全背包+二分)然后就枚举就好了. #include<cstdio> #include<a ...
- caioj 1087 动态规划入门(非常规DP11:潜水员)(二维背包)
这道题的难点在于价值可以多. 这道题我一开始用的是前面的状态推现在的状态 实现比较麻烦,因为价值可以多,所以就设最大价值 为题目给的最大价值乘以10 #include<cstdio> #i ...
- 洛谷P1280 && caioj 1085 动态规划入门(非常规DP9:尼克的任务)
这道题我一直按照往常的思路想 f[i]为前i个任务的最大空暇时间 然后想不出来怎么做-- 后来看了题解 发现这里设的状态是时间,不是任务 自己思维还是太局限了,题做得太少. 很多网上题解都反着做,那么 ...
- caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)
这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...
- caioj 1083 动态规划入门(非常规DP7:零件分组)(LIS)
这道题题目给的顺序不是固定的 所以一开始要自己排序,按照w来排序 后来只要看l就可以了 然后求最长下降子序列即可(根据那个神奇的定理,LIS模板里有提到) #include<cstdio> ...
- caioj 1082 动态规划入门(非常规DP6:火车票)
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...
- caioj 1081 动态规划入门(非常规DP5:观光游览)
这道题和前面的分组的题有点像 就是枚举最后一组的长度. 然后组数可以在第一层循环也可以在第二层循环 我自己的话就统一一下在第一层循环吧 然后这道题题意我一直没理解清楚,浪费了很多时间,写复杂了 同时初 ...
- caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)
这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...
随机推荐
- NPInter数据集的奇葩标号的出坑秘籍
这篇恐怕是有始以来命名最无奈标题了.需要写一下攻略. 业内人士都熟知NPInter,但是该数据库一直以来访问受限.不过终于能访问得到数据集. 但是蛋疼的是2.0的数据库id的命名方法实在奇葩,想了很多 ...
- jquery 几种类选择器方式
代码如下: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="TestClas ...
- mybatis批量插入、批量更新和批量删除
转载 https://www.jianshu.com/p/041bec8ae6d3
- javascript中的正则示例
// 方式一var obj_re = new RegExp("\d+","gi"); //g 全局,i 不区分大小写obj_re.test("fasf ...
- ccs元素分类 gcelaor
ccs元素的分类与特点 内联元素特点: 1.和其他元素都在一行上: 2.元素的高度.宽度及顶部和底部边距不可设置: 3.元素的宽度就是它包含的文字或图片的宽度,不可改变. inline-block 元 ...
- FFT&NTT学习笔记
具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...
- CF1005F Berland and the Shortest Paths (树上构造最短路树)
题目大意:给你一个边权为$1$的无向图,构造出所有$1$为根的最短路树并输出 性质:单源最短路树上每个点到根的路径 ,一定是这个点到根的最短路之一 边权为$1$,$bfs$出单源最短路,然后构建最短路 ...
- makefile--回顾基础篇
前阵子让写makefile,纠结了下,基本忘记差不多了. 1.gcc的编译选项 -c 只是编译不链接,生成目标文件“.o” -S 只是编译不汇编,生成汇编代码 -E 只进行预编译,不做其他处理 -g ...
- 四则运算1 java+jsp+SQLServer
1,设计思想(1)在java resourse里定义包和类 (2)在类里定义生成算式,并将算式保存在数据库中的方法 (3)在jsp文件中调用java方法 2,源程序代码 生成算式的方法 public ...
- vue中使用viewerjs
项目创建 插件Viewer.js vue init webpack mytest001 安装viewerjs npm install viewerjs 删掉生成的项目里面的helloWord.vue ...