【2017 Multi-University Training Contest - Team 7】Hard challenge
【Link】:http://acm.hdu.edu.cn/showproblem.php?pid=6127
【Description】
平面上有n个点,每个点有一个价值,每两个点之间都有一条线段,定义线段的值为两个点价值的乘积,现在让你找一条过原点的直线(直线不经过任何一个节点),将这条直线所经过的所有线段的值求和,问最大的和是多少.
【Solution】
假设有一条线把x轴上方和x轴下方的点分开了;
这样这条线的答案就为(val上1+val上2+…+val上n)*(val下1+val下2+…+val下n);
把上边的点的权值加起来,下边的点的权值也加起来.然后做下乘法就好.
之后,我们只要一点一点地逆时针旋转这条直线就好了;
每次遇到的第一个点,就改变上半部分删掉它之后权值的改变量;
在所有里面取最大值即可;
在转的时候,不管是直线的哪一个地方,只要遇到了一个点就停下来;
然后计算改变量.
如果是在x轴的下方的点的话,就是从直线的下方变成上方.
如果是在x轴的上方…
遇到的是哪一点并不好判断!
于是,我们考虑把x轴下方的点按原点对称到上方来.
(记录它原来是下方的);
这样,我们只要按照角升序排一下.
然后顺序处理,就能知道下一个会遇到的点是哪一个点了.
因为不存在两点经过原点,所以不会出现重复点.
虽然我们把它翻到了x轴上方,但我们在处理的时候,还是在原图上基础上处理的,即每个点转到之后和直线的位置关系
只不过能更清楚的知道下一个遇到的点是什么
【NumberOf WA】
0
【Reviw】
老是重新算很麻烦,就尝试一步一步地改变.
【Code】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define ri(x) scanf("%d",&x)
#define rl(x) scanf("%lld",&x)
#define rs(x) scanf("%s",x+1)
#define oi(x) printf("%d",x)
#define ol(x) printf("%lld",x)
#define oc putchar(' ')
#define os(x) printf(x)
#define all(x) x.begin(),x.end()
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 5e4;
struct abc{
LL x,y,val;
int tag;
double c;
friend bool operator < (const abc &a,const abc &b){
return a.c > b.c;
}
};
int n;
abc a[N+10];
LL sqr(LL x){
return x*x;
}
int main(){
//Open();
//Close();
int T;
ri(T);
while (T--){
ri(n);
rep1(i,1,n){
rl(a[i].x),rl(a[i].y),rl(a[i].val);
if (a[i].y < 0){
a[i].tag = 0;
a[i].x = - a[i].x;
a[i].y = - a[i].y;
}else
a[i].tag = 1;
a[i].c = 1.0*a[i].x/(1.0*sqrt((double)(sqr(a[i].x)+sqr(a[i].y))));
}
sort(a+1,a+1+n);
LL s0 = 0,s1 = 0,temp = 0,ans;
rep1(i,1,n){
if (a[i].tag==0)
s0 += a[i].val;
else
s1 += a[i].val;
}
rep1(i,1,n)
if (a[i].tag == 1)
temp += s0*a[i].val;
ans = temp;
rep1(i,1,n){
if (a[i].tag == 1){
temp = temp - a[i].val*s0 + a[i].val*(s1-a[i].val);
s1 -= a[i].val;
s0 += a[i].val;
}else{
temp = temp - a[i].val*s1 + a[i].val*(s0-a[i].val);
s1 += a[i].val;
s0 -= a[i].val;
}
ans = max(ans,temp);
}
ol(ans);puts("");
}
return 0;
}
【2017 Multi-University Training Contest - Team 7】Hard challenge的更多相关文章
- 【2017 Multi-University Training Contest - Team 2】TrickGCD
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6053 [Description] 给你一个b数组,让你求一个a数组: 要求,该数组的每一位都小于等 ...
- 【2017 Multi-University Training Contest - Team 2】Maximum Sequence
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6047 [Description] 给你一个数列a和一个数列b; 只告诉你a的前n项各是什么; 然后 ...
- 【2017 Multi-University Training Contest - Team 2】 Regular polygon
[Link]: [Description] 给你n个点整数点; 问你这n个点,能够组成多少个正多边形 [Solution] 整点只能构成正四边形. 则先把所有的边预处理出来; 枚举每某两条边为对角线的 ...
- 【2017 Multi-University Training Contest - Team 2】 Is Derek lying?
[Link]: [Description] 两个人都做了完全一样的n道选择题,每道题都只有'A','B','C' 三个选项,,每道题答对的话得1分,答错不得分也不扣分,告诉你两个人全部n道题各自选的是 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Competition
[Link]: [Description] [Solution] 把所有人的能力从大到小排; 能力最大的肯定可能拿冠军; 然后一个一个地往后扫描; 一旦出现a[i-1]-a[i]>k; 则说明从 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Subset
[Link]: [Description] 给你a数组的n个数的所有2^n个子集的2^n个子集元素的和; 子集元素的和最大为m; 告诉你各个子集元素的和出现的次数; 如 1 2 则0出现1次,1出现1 ...
- 【2017 Multi-University Training Contest - Team 5】Rikka with Graph
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6090 [Description] 给你n个点; 让你在这n个点上最多连m条无向边; 使得 ∑ni= ...
- 【2017 Multi-University Training Contest - Team 4】Time To Get Up
[Link]: [Description] [Solution] 把每个数字长什么样存到数组里就好;傻逼题. (直接输入每一行是什么样子更快,不要一个字符一个字符地输入) [NumberOf WA] ...
- 【2017 Multi-University Training Contest - Team 4】Counting Divisors
[Link]:http://acm.hdu.edu.cn/showproblem.php?pid=6069 [Description] 定义d(i)为数字i的因子个数; 求∑rld(ik) 其中l,r ...
随机推荐
- POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)
Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...
- Create the Project
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/getting-started/getting-started-with-aspn ...
- shrio 登录/退出
身份验证,即在应用中谁能证明他就是他本人.一般提供如他们的身份ID一些标识信息来表明他就是他本人,如提供身份证,用户名/密码来证明. 在shiro中,用户需要提供principals (身份)和cre ...
- jdbc参数传递
1.jdbc请求设置 将查询结果第一列coupon_id,存放在couponId中; 将查询结果第二列code,存放在coupCode中 2.参数解释: couponId_#:表示查询结果中coupo ...
- Network Stack : Disk Cache
Disk Cache 目录 1 Overview 2 External Interface 3 Disk Structure 3.1 Cache Address 3.2 Index File Stru ...
- Sandbox
Sandbox Contents Overview Design principles Sandbox windows architecture The broker process The targ ...
- POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)
模板题,直接用 /********************* Template ************************/ #include <set> #include < ...
- 统计学习:《贝叶斯思维统计建模的Python学习法》中文PDF+英文PDF+代码
用数学工具解决实际问题仅有的要求可能就是懂一点概率知识和程序设计.而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别, ...
- debian8平滑升级到debian9
本文在Creative Commons许可证下发布. 首先,在升级时可以查看一下自己的版本号: uname -a ##查看内核信息 cat /etc/issue ##查看发行版本号 方法1:利用网 ...
- 今日SGU 5.17
SGU 119 题意:给你一个0-15组成的4*4的矩形,问你能不能回到正常 收获:把矩形变成一维数组,然后判断当前矩形状态到目标状态(逆序对为15)逆序对和0到目标的奇偶性是否不相同,证明题,引荐大 ...