建堆是 O(n) 的时间复杂度证明。
建堆的复杂度先考虑满二叉树,和计算完全二叉树的建堆复杂度一样。
对满二叉树而言,第 \(i\) 层(根为第 \(0\) 层)有 \(2^i\) 个节点。
由于建堆过程自底向上,以交换作为主要操作,因此第 \(i\) 层任意节点在最不利情况下,
需要经过 \((n - i)\) 次交换操作才能完成以该节点为堆根节点的建堆过程。
因此,时间复杂度计算如下:
\(T(n) = 2^0 * (n - 0) + 2^1 * (n - 1) + ... + 2^n * (n - n) = \sum_{i = 0}^{n}(2^i * (n - i))\)
将上式乘以 \(2\)得:
\(2*T(n) = 2^1 * (n - 0) + 2^2 * (n - 1) + ... + 2^{n+1} * (n - n) = \sum_{i = 1}^{n+1}(2^i * (n - i))\)
原式减去上式得:
\(2T(n) - T(n) = -n + 2^1 + 2^2 + ... + 2^n = 2 * \frac{1 - 2^n} {1 - 2} - n = 2^{n+1} - 2 - n\).
上面推导中,\(n\) 为层数编号(自 \(0\) 层根节点开始)。
故总节点数为 \((1 + 2 + 4 + ... + 2^n) = 2^{n+1} - 1\)。
渐进时,忽略减 \(1\) 取 \(N = 2^{n+1}\) 。
所以,\(T(N) = 2^{n+1} - n - 2 = N * (1 - \frac{logN} { N} - \frac{2} {N}) ≈ N\).
所以,建堆的时间复杂度为 \(O(N)\) ,得证。\(N\)为总节点数。
建堆是 O(n) 的时间复杂度证明。的更多相关文章
- 建堆复杂度O(n)证明
堆排序中首先需要做的就是建堆,广为人知的是建堆复杂度才O(n),它的证明过程涉及到高等数学中的级数或者概率论,不过证明整体来讲是比较易懂的. 堆排过程 代码如下 void print(vector&l ...
- Python3实现最小堆建堆算法
今天看Python CookBook中关于“求list中最大(最小)的N个元素”的内容,介绍了直接使用python的heapq模块的nlargest和nsmallest函数的解决方式,记得学习数据结构 ...
- 堆+建堆、插入、删除、排序+java实现
package testpackage; import java.util.Arrays; public class Heap { //建立大顶堆 public static void buildMa ...
- 一些求和式的估算 & 杜教筛时间复杂度证明
本文内容概要: \(A=\sum\limits_{i=1}^n\dfrac1{\sqrt i}=1+\dfrac1{\sqrt2}+\cdots+\dfrac1{\sqrt n}\) \(O(\sqr ...
- luogu P4183 Cow at Large P (暴力吊打点分治)(内有时间复杂度证明)
题面 贝茜被农民们逼进了一个偏僻的农场.农场可视为一棵有N个结点的树,结点分别编号为 1,2,-,N .每个叶子结点都是出入口.开始时,每个出入口都可以放一个农民(也可以不放).每个时刻,贝茜和农民都 ...
- 第十章 优先级队列 (b4)完全二叉堆:批量建堆
- 自己动手实现java数据结构(八) 优先级队列
1.优先级队列介绍 1.1 优先级队列 有时在调度任务时,我们会想要先处理优先级更高的任务.例如,对于同一个柜台,在决定队列中下一个服务的用户时,总是倾向于优先服务VIP用户,而让普通用户等待,即使普 ...
- go实现堆排序、快速排序、桶排序算法
一. 堆排序 堆排序是利用堆这种数据结构而设计的一种排序算法.以大堆为例利用堆顶记录的是最大关键字这一特性,每一轮取堆顶元素放入有序区,就类似选择排序每一轮选择一个最大值放入有序区,可以把堆排序看成是 ...
- 堆排序中建堆过程时间复杂度O(n)怎么来的?
首先这个循环是从i = headsize/2 -> 1,也就是说这是一个bottom-up的建堆.于是,有1/2的元素向下比较了一次,有1/4的向下比较了两次,1/8的,向下比较了3次,.... ...
随机推荐
- BZOJ——T 1612: [Usaco2008 Jan]Cow Contest奶牛的比赛
http://www.lydsy.com/JudgeOnline/problem.php?id=1612 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1 ...
- ArcGIS api for javascript——使用图层定义显示地图
描述 本例展示如何使用图层定义来限制显示在地图上的图层信息.为了了解本例做了什么,看看用于这个地图的ESRI_Census_USA服务的服务目录页是有帮助的.检查地图中的图层列表.现在注意这行代码限制 ...
- swift具体解释之八---------------下标脚本
swift具体解释之八-----下标脚本 下标脚本 能够定义在类(Class).结构体(structure)和枚举(enumeration)这些目标中.能够觉得是訪问对象.集合或序列的快捷方式.不须要 ...
- hdoj--2682--Tree()
Tree Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- JS--处理重复元素
1.Js找出在数组中出现过的元素,即删除重复元素最后只留一个 <script> function findEleOnly(arr){ for(var i=arr.length-1;i> ...
- CentOS上搭建Tomcat环境并配置服务自启动
下载安装JDK 卸载原装的OpenJDK(如果有) # 查看是否安装Java java -version # 查看Java的安装包信息 rpm -qa | grep java # 卸载原装Java,& ...
- 库:IO读写操作
在Java文件读取路径要注意的地方: 计算机:"D:\" 程序:"D://" 内存与硬盘之间进行文件的相互传输过程 以应用程序为参考点,应用程序从硬盘中读取数据 ...
- 《一》安装 TP5
tp5 官方参考手册:http://www.kancloud.cn/manual/thinkphp5/118008 我这里采用的是 composer 安装,如果您没有安装 composer 的话 tp ...
- vue踩坑-This relative module was not found
在使用vue.js的日期选择插件 的时候,报错如下 This relative module was not found: * ../calendar.vue in ./node_modules/ba ...
- JavaLearning:日期操作类
package org.fun.classdemo; import java.util.Calendar; import java.util.GregorianCalendar; public cla ...