中心极限定理|z分布|t分布|卡方分布
生物统计学
抽样分布:n个样本会得到n个统计量,将这n个统计量作为总体,该总体的分布即是抽样分布
根据辛钦大数定律,从一个非正态分布的总体中抽取的含量主n的样本,当n充分大时,样本平均数渐近服从正态分布。因此平均数的抽样分布对正态性的要求并不是十分严格,但方差的抽样分布,对总体的正态性的要求是十分严格的。
样本平均值的分布:
基于正态总体(两个参数都知道)的抽样分布:
eg':总体n=3,
因为n=2有放回抽样,有9种可能性:
n=4有放回抽样,有81种可能性
统计量与总体参数不完全一样,但是满足以上关系,所以有:
标准误就是参数方差
非正态分布总体(两个参数都知道):根据中心极限定理,大样本同基于正态总体
所以,只要是大样本都会满足z分布,z即满足N(0,1)
方差未知:用样本标准差代替总体标准差,并得到t,此时是t满足自由度为(n-1)的t分布,从PDF可知t分布只与自由度有关,与其他无关。
因为n个数要满足均数,必有一个数的值受其他数影响,又因为自由度是独立观测的个数,所以自由度为n-1:
当自由度较大时,也就是n较大时就是正态分布;t--->u
特征值:
总体分布和抽样分布的关系:
PS:对于总体分布未知的小样本并无方法
样本方差的分布
正态总体时,两个参数都知道的情况下,样本方差满足卡方分布
随机变量是S方,所以卡方也是一个随机变量,卡方分布只与自由度有关系。
总结:
两个正态分布总体(都知道均数和方差),两个样本平均数的和与差的分布:利用正态分布加加减减
两个正态分布总体(都知道均数,但未知方差具体值,但知道方差相等),两个样本平均数的和与差的分布:利用他分布加加减减
分布使用条件:1.均值是否已知?2.方差是否已知?3.样本量是大或者小?
中心极限定理|z分布|t分布|卡方分布的更多相关文章
- 抽样分布|t分布|中心极限定理|点估计|矩估计|最大似然法|
生物统计与实验设计-统计学基础-2&区间估计-1 正态分布参数:均值和方差 其中,选择1d是因为好算:通常,95%区分大概率事件和小概率事件, 当总体是正态分布时,可以利用常用抽样分布估计出样 ...
- BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)
BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...
- 中心极限定理(Central Limit Theorem)
中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为 ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...
- 中心极限定理(为什么y服从高斯分布)
因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...
- 中心极限定理 | central limit theorem | 大数定律 | law of large numbers
每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?
- 中心极限定理&&正态分布 随想
0-前言 笔者本来周末约好朋友出去骑行,不料天公不作美!哎,闲来无事来到了实验室,本来打算看看<天天向上>,而这一期又实在不好看(偶像剧).只好来做做一些小实验,脑海里突然想到“正态分布“ ...
- 【概率论】6-3:中心极限定理(The Central Limit Theorem)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...
- t分布|F分布|点估计与区间估计联系|
应用统计学 推断统计需要样本形容总体,就要有统计量.注意必须总体是正态分布,否则统计量的分布不能得到.卡方分布和t分布只要样本大于30都近似于正态分布. t分布和F分布推导及应用(图): 总体比例是π ...
- Weibull分布(韦伯分布、威布尔分布)
log函数 从概率论和统计学角度看,Weibull Distribution是连续性的概率分布,其概率密度为: 其中,x是随机变量,λ>0是比例参数(scale parameter),k> ...
随机推荐
- Oracle数据库中表的imp&exp
在Oracle数据库中可以使用imp和exp命令来执行数据的导入导出(包括表结构和数据),使用imp和exp命令执行导入导出操作必需的是需要安装Oracle数据库,系统安装Oracle数据库,可以识别 ...
- dfs--汉诺塔
在研究汉诺塔问题时,我们可以先分析俩个盘子的方法: 1.把第一个盘子放到辅助柱子上 2.把第二个盘子放大目标柱子上 3.把第一个盘子从辅助柱子移到目标柱子上 由此我们可以通过整体思想推导出一共有n个盘 ...
- PAT Basic 1132 数列的⽚段和(20) [数学问题-简单数学]
题目 给定⼀个正数数列,我们可以从中截取任意的连续的⼏个数,称为⽚段.例如,给定数列{0.1, 0.2, 0.3,0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0 ...
- 基于redis实现锁控制
多数据源 数据源1为锁控制,数据源2自定义,可用于存储. 锁:当出现并发的时候为了保证数据的一致性,不会出现并发问题,假设,用户1修改一条信息,用户2也同时修改,会按照顺序覆盖自修改的值,为了避免这种
- 第二季第八天 part2
for (let i = 0; i < 3; i++) { log(i) } log(i) // 结果是 undefined let和const的作用域只在花括号内 let和const不能重复声 ...
- Redis--初识Redis
Redis 是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型.Redis 提供了 5 种不同类型的数据结构,各式各样的问题都可以很自然的映射到这些数据结构 ...
- #JS# 如何判断一个字符串是否为日期格式
var data = “2018-12-09”; //返回为false则是日期格式;isNaN(data)排除data为纯数字的情况(此处不考虑只有年份的日期,如‘2018’) if(isNaN(da ...
- Android圆角布局、天气应用、树状图、日食动画、仿饿了么导航效果等源码
Android精选源码 Android通用圆角布局源码 Android天气应用源码,界面美观 一个支持定制的树状 Android 自定义View PIN 码专用输入控件,支持任意长度和输入任意数据 A ...
- Maven打包时报Failed to execute goal org.apache.maven.plugins:maven-war-plugin:解决方案
问题现象: 用Maven打包时,报Failed to execute goal org.apache.maven.plugins:maven-war-plugin:2.2:war错误. 原因分析: 打 ...
- 第04项目:淘淘商城(SpringMVC+Spring+Mybatis)【第九天】(商品详情页面实现)
https://pan.baidu.com/s/1bptYGAb#list/path=%2F&parentPath=%2Fsharelink389619878-229862621083040 ...