LIS(最长上升子序列)的 DP 与 (贪心+二分) 两种解法
正好训练赛来了一道最长递减序列问题,所以好好研究了一下最长递增序列问题。
Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u
Description
The tests which the contractor completed were computer simulations of battlefield and hostile attack conditions. Since they were only preliminary, the simulations tested only the CATCHER's vertical movement capability. In each simulation, the CATCHER was fired at a sequence of offensive missiles which were incoming at fixed time intervals. The only information available to the CATCHER for each incoming missile was its height at the point it could be intercepted and where it appeared in the sequence of missiles. Each incoming missile for a test run is represented in the sequence only once.
The result of each test is reported as the sequence of incoming missiles and the total number of those missiles that are intercepted by the CATCHER in that test.
The General Accounting Office wants to be sure that the simulation test results submitted by the military contractor are attainable, given the constraints of the CATCHER. You must write a program that takes input data representing the pattern of incoming missiles for several different tests and outputs the maximum numbers of missiles that the CATCHER can intercept for those tests. For any incoming missile in a test, the CATCHER is able to intercept it if and only if it satisfies one of these two conditions:
The incoming missile is the first missile to be intercepted in this test.
-or-
The missile was fired after the last missile that was intercepted and it is not higher than the last missile which was intercepted.
Input
Output
Note: The number of missiles for any given test is not limited. If your solution is based on an inefficient algorithm, it may not execute in the allotted time.
Sample Input
389
207
155
300
299
170
158
65
-1
23
34
21
-1
-1
Sample Output
Test #1:
maximum possible interceptions: 6 Test #2:
maximum possible interceptions: 2
一种是动态规划方法
#include <iostream>
#include <cstdio>
int f[];
int p[];
int main()
{
int count=;
int cur=;
while (scanf("%d",&p[cur++]))
{
if (p[cur-]==-)
if (cur-==) break;
else
{
int i,j,k;
for (i=;i<cur-;i++)
f[i]=;
for (i=;i<cur-;i++)//类似于背包一样进行物品循环
{
for (j=i-;j>=;j--)//类似于循环背包容量。
{
if (p[i]<=p[j]) //此题求得是递减序列,故符号位<=
if (f[i]<f[j]+) f[i]=f[j]+;
}
}
int ans=;
for (i=;i<cur-;i++)
{
if (ans<f[i]) ans=f[i];//此时的最大量不一定是坐标最大时,所以要这样来一下。
}
printf("Test #%d:\n",++count);
printf(" maximum possible interceptions: %d\n\n",ans);
cur=;
} }
return ;
}
还有一种方法是贪心加二分的方法。
贴了一下大神博客的内容
开一个栈,每次取栈顶元素top和读到的元素temp做比较,如果temp > top 则将temp入栈;如果temp < top则二分查找栈中的比temp大的第1个数,并用temp替换它。 最长序列长度即为栈的大小top。
这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。
举例:原序列为1,5,8,3,6,7
栈为1,5,8,此时读到3,用3替换5,得到1,3,8; 再读6,用6替换8,得到1,3,6;再读7,得到最终栈为1,3,6,7。最长递增子序列为长度4。
用该算法完成POJ2533的具体代码如下:
#include <iostream> |
关于这道题,我的代码是
#include <iostream>
#include <cstdio>
using namespace std;
int stack[];
int p[]; int main()
{
int count=;
int cur=;
while (scanf("%d",&p[cur++]))
{
if (p[cur-]==-)
if (cur-==) break;
else
{
int i,j,k;
int top=;
stack[top++]=p[];//模拟棧的操作。
for (i=; i<cur-; i++)
{
if (p[i]<stack[top-])
stack[top++]=p[i];
else
{
int l=,r=top,mid;
while (l<r)//二分的地方要注意,在递增序列里,要使得能搜到正好大于p[i]的那个点。。。若为递减序列,则要能正好搜到小于p[i]的那个点
{
mid=(l+r)/;
if (stack[mid]<p[i]) r=mid;//因为是递减序列,所以为小于
else
l=mid+;
}
stack[l]=p[i];
}
}
printf("Test #%d:\n",++count);
printf(" maximum possible interceptions: %d\n\n",top);
cur=;
} }
return ;
}
LIS(最长上升子序列)的 DP 与 (贪心+二分) 两种解法的更多相关文章
- 【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)
题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include& ...
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- 动态规划模板1|LIS最长上升子序列
LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...
- POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- hdu 5256 序列变换(LIS最长上升子序列)
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...
- 洛谷 P1439 【模板】最长公共子序列(DP,LIS?)
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...
随机推荐
- mysql产生随机数
mysql产生随机数小结一下,可以为mysql的表生成大量的随机数: 1) 产生0到10000间的随机数 SELECT RAND() * 10000; 对应产生相应的整数 SELECT ...
- HiBench成长笔记——(3) HiBench测试Spark
很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 创建并修改配置文件conf/spa ...
- MySQL 批量更新、删除数据shell脚本
#!/bin/bash. ~/.bash_profilelog=/tmp/update_log_1_$(date +%F).logvstart=1step=100vstop=$((${vstart}+ ...
- 将xml字符串的所有叶标签转换成Map集合
实际问题:对方服务器接口采用webservice方式返回xml报文,现需解析xml获取所有叶节点的标签名及携带的值 解决方案:利用dom4j解析xml并利用递归获取叶节点,将标签名及标签值封装到Map ...
- SpringBoot-拦截器配置
SpringBoot-拦截器配置 SpringBoot-拦截器配置 在我们的SSM项目中,可以在web.xml中配置拦截器,但是在SpringBoot中只能使用java类来配置,配置方法如下. 创建拦 ...
- 微信小程序学习开发笔记
首先注册小程序开账号,下载开发工具之后,先啃官方文档:https://developers.weixin.qq.com/miniprogram/dev/framework/ ,把小程序的基本的代码框架 ...
- linux 查看运行进程详细信息
Linux在启动一个进程时,系统会在/proc下创建一个以PID命名的文件夹,在该文件夹下会有我们的进程的信息 通过ll或ls –l命令即可查看. ll /proc/PID cwd符号链接的是进程运行 ...
- Postman配置Pre-request scripts预请求对请求进行AES加密
1.首先,Postman的Pre-request scripts页面右边已经提供了一些模板,这些模板可以设置变量与环境变量,并使用双大括号对变量进行引用 {{info}} 2.对所有POST请求都进行 ...
- 重采样Resample 的一些研究记录。
最近项目有需要重采样算法,先找了一下,主流的就是几个开源算法,Speex / Opus / ffmpeg / sox 1.最早的事Speex,算法源自CCRMA(Center for Computer ...
- gitolite服务器配置的一些心得
1.假设说有服务器1,hostname为lab1,服务器2,hostname为lab2,分别生成的给对方使用的公钥为server-lab1.pub.server-lab2.pub,服务器1和2都有自己 ...