http://blog.csdn.net/u014492306/article/details/47981315 //变相离线做法

离散化缩小区间范围,做两大个线段树,第一个就是普通的持久化树,有个前缀和就好。

第二个用线段树套树状数组,每次询问就把这两个都求出来加一下。

更改就更改第二个,其实更改的时候只需要建一条链然后重复用这条链衍生就好了,但是为了抄的方便,就不改了。。。

当然这个空间上比较优秀的只有O(nlogn).

#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
using namespace std;
const int N=6e4+;
const int M=;
int m,n,nn,tot;
int a[N],f[N],T[N],S[N];
int sum[M],l[M],r[M];
int use[N];
int h(int x) {return lower_bound(f+,f+nn+,x)-f;}
void update(int pr,int lx,int rx,int v,int k){
l[++tot]=l[pr],r[tot]=r[pr],sum[tot]=sum[pr]+k;
if(lx==rx) return;
int mid=(lx+rx)>>;
if(v<=mid) l[tot]=tot+,update(l[pr],lx,mid,v,k);
else r[tot]=tot+,update(r[pr],mid+,rx,v,k);
}
int Sum(int x){
int res=;
for(int i=x;i;i-=lowbit(i)) res+=sum[l[use[i]]];
return res;
}
void add(int x,int v,int k){
int temp;
for(int i=x;i<=n;i+=lowbit(i)) {
temp=S[i];
S[i]=tot+;
update(temp,,nn,v,k);
}
}
int query(int L,int R,int k){
for(int i=L-;i;i-=lowbit(i)) use[i]=S[i];
for(int i=R;i;i-=lowbit(i)) use[i]=S[i];
int lx=,rx=nn,lt=T[L-],rt=T[R];
while(lx<rx) {
int mid=(lx+rx)>>;
int tmp=Sum(R)-Sum(L-)+sum[l[rt]]-sum[l[lt]];
if(k<=tmp) {
rx=mid;
for(int i=L-;i;i-=lowbit(i)) use[i]=l[use[i]];
for(int i=R;i;i-=lowbit(i)) use[i]=l[use[i]];
lt=l[lt],rt=l[rt];
}
else {
lx=mid+,k-=tmp;
for(int i=L-;i;i-=lowbit(i)) use[i]=r[use[i]];
for(int i=R;i;i-=lowbit(i)) use[i]=r[use[i]];
lt=r[lt],rt=r[rt];
}
}
return f[lx];
}
char op[];
int q[][],Ta;
int main(){
for(scanf("%d",&Ta);Ta--;) {
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) scanf("%d",a+i),f[i]=a[i];
nn=n;
for(int i=;i<=m;++i) {
scanf("%s",op);
if(op[]=='Q') {
scanf("%d%d%d",&q[i][],&q[i][],&q[i][]);
q[i][]=;
}
else {
scanf("%d%d",&q[i][],&q[i][]);
q[i][]=;
f[++nn]=q[i][];
}
}
sort(f+,f++nn);
nn=unique(f+,f+nn+)-f-;
tot=,T[]=;
for(int i=;i<=n;++i) T[i]=tot+,update(T[i-],,nn,h(a[i]),);
for(int i=;i<=n;++i) S[i]=;
for(int i=;i<=m;++i) {
if(q[i][]) printf("%d\n",query(q[i][],q[i][],q[i][]));
else {
add(q[i][],h(a[q[i][]]),-);
add(q[i][],h(q[i][]),);
a[q[i][]]=q[i][];
}
}
}
return ;
}

如果强制在线的话,只能一开始就用线段树套树状数组了,空间复杂度O(nlog(1e9)log(1e9)),为什么是1e9是因为你没办法事先离散化,因为你不知道更改的时候他要改成什。

http://blog.sina.com.cn/s/blog_4a0c4e5d0101c3yj.html

可修改的区间第K大 BZOJ1901 ZOJ2112的更多相关文章

  1. ZOJ -2112 Dynamic Rankings 主席树 待修改的区间第K大

    Dynamic Rankings 带修改的区间第K大其实就是先和静态区间第K大的操作一样.先建立一颗主席树, 然后再在树状数组的每一个节点开线段树(其实也是主席树,共用节点), 每次修改的时候都按照树 ...

  2. ZOJ 2112 Dynamic Rankings(带修改的区间第K大,分块+二分搜索+二分答案)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  3. POJ2104-- K-th Number(主席树静态区间第k大)

    [转载]一篇还算可以的文章,关于可持久化线段树http://finaltheory.info/?p=249 无修改的区间第K大 我们先考虑简化的问题:我们要询问整个区间内的第K大.这样我们对值域建线段 ...

  4. 主席树区间第K大

    主席树的实质其实还是一颗线段树, 然后每一次修改都通过上一次的线段树,来添加新边,使得每次改变就改变logn个节点,很多节点重复利用,达到节省空间的目的. 1.不带修改的区间第K大. HDU-2665 ...

  5. 【ZOJ2112】【整体二分+树状数组】带修改区间第k大

    The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with t ...

  6. Dynamic Rankings——带修改区间第k大

    三种做法:1.整体二分: 二分mid 考虑小于mid的修改的影响 但是大于mid的修改可能会干掉小于mid的一些值 所以额外把一个修改变成一个值的删除和一个值的添加 这样就相互独立了! 整体二分,树状 ...

  7. 【POJ】【2104】区间第K大

    可持久化线段树 可持久化线段树是一种神奇的数据结构,它跟我们原来常用的线段树不同,它每次更新是不更改原来数据的,而是新开节点,维护它的历史版本,实现“可持久化”.(当然视情况也会有需要修改的时候) 可 ...

  8. poj 2104 主席树(区间第k大)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 44940   Accepted: 14946 Ca ...

  9. POJ 2104 && POJ 2761 (静态区间第k大,主席树)

    查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...

随机推荐

  1. SSH 超时设置

    在阿里云买了一台乞丐版服务器,搭了一个博客,安装了java,mysql,redis等服务,把以前写的知乎爬虫部署上去,看看爬取效果.程序运行一段时间后,发现cmder上的日志不打了,我原以为爬虫挂了, ...

  2. 日日算法:Dijkstra算法

    介绍 Dijistra算法作为一种最短路径算法,可以用来计算一个节点到图上其他节点的最短距离. 主要是通过启发式的思想,由中心节点层层向外拓展,直到找到中点. 适用于无向图和有向图. 算法思想 假设我 ...

  3. php-fpm7 启动脚本

    [root@bbs init.d]$ cat php-fpm7 #!/bin/sh # DateTime:20170918 # Source function library. . /etc/rc.d ...

  4. ELSE 技术周刊(2017.12.25期)

    业界动态 V8 release v6.4 V8引擎发布v6.4,在速度和内存优化上又带来了一些提升.对于instanceof操作符的优化,带来了3.6x速度提升,同时使得uglify-js提高了15- ...

  5. Computational Geometry

    矩形重叠 看过某司一道笔试题:给\(n\)个矩形左下和右上坐标(不能斜放),求重叠最多处矩形个数. 这道题本身不难:可以遍历所有矩形边界组成的点,计算该点被多少矩形包围,从而选出最大值. 由此引申出一 ...

  6. HDU 1159.Common Subsequence【动态规划DP】

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

  7. 数学--数论--HDU6919 Senior PanⅡ【2017多校第九场】

    Description 给出一个区间[L,R][L,R],问该区间中所有以KK作为最小因子(大于11的)的数字之和 Input 第一行输入一整数TT表示用例组数,每组用例输入三个整数L,R,KL,R, ...

  8. 前端——Vue.js学习总结一

    一.什么是Vue.js 1.Vue.js 是目前最火的一个前端框架,React是最流行的一个前端框架 2.Vue.js 是前端的主流框架之一,和Angular.js.React.js 一起,并成为前端 ...

  9. 利用vue-cli + vant搭建一个移动端开发模板

    本文系原创,转载请附带作者信息.项目地址: https://github.com/momozjm/vant-project.git 前言 在项目开发过程中,一个新的项目需要我们从零开始搭建框架,这个时 ...

  10. OpenWrt R2020.3.19 反追踪 抗污染 加速 PSW 无缝集成 UnPnP NAS

    固件说明 基于Lede OpenWrt R2020.3.19版本Lienol Feed及若干自行维护的软件包 结合家庭x86软路由场景需要定制 按照家庭应用场景对固件及软件进行测试,通过后发布 设计目 ...